期刊文献+

文本观点挖掘和情感分析的研究 被引量:2

Research on Text Opinion Mining and Sentiment Analysis
下载PDF
导出
摘要 观点挖掘和情感分析是分析用户观点,反馈,情感,评估,态度和个人情感的一个研究领域。这是自然语言处理中最活跃的一个研究领域,在数据挖掘,Web挖掘和文本挖掘领域中同样也被广泛研究。随着社交媒体、Web2.0技术(如新闻、论坛、博客、微博和社交网络)的发展,情感分析的重要性相应增长。首次在人类历史上,我们有了大量的数字形式的观点意见需要进行分析。在本文中,我们对文本观点挖掘、情感分析以及相关技术进行了研究。 Opinion mining and sentiment analysis is the field to analyzes the user point of view, feedback, emotion, sentiment,evaluations, attitudes, and emotions. This is one of the most active research areas in Natural Language Processing. Data mining,web mining and text mining have also been widely studied. With the development of social media, Web2.0 Technology(such as news, forum, blog, micro-blog and social network), the importance of sentiment analysis growth. For the first time in human history, we have to analyze a large number of opinions in digital form. In this paper, we research on text opinion mining, sentiment analysis and related technology.
作者 涂慧明
机构地区 东华理工大学
出处 《电脑知识与技术》 2016年第2Z期235-237,共3页 Computer Knowledge and Technology
关键词 观点抽取 观点挖掘 情感分析 文本挖掘 Opinion extraction Opinion mining Sentiment analysis Text mining
  • 相关文献

参考文献1

二级参考文献28

  • 1LIU B, HU M, CHENG J. Opinion observer: Analyzing and comparing opinions on the Web[ C]// Proceedings of the 14th International Conference on World Wide Web: WWW 2005. New York: ACM Press, 2005:342 - 351.
  • 2PANG B, LEE L. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts[ C]// Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics. Morristown, N J, USA: Association for Computational Linguistics, 2004:271 -278.
  • 3YU H, HATZIVASSILOGLOU V. Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences[ C]// Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing. Morristown, N J, USA: Association for Computational Linguistics. 2003:129 - 136.
  • 4WILSON T, HOFFMANN P, SOMASUNDARAN S, et al. Opinion-Finder: A system for subjectivity analysis[ C]// Proceedings of the 2005 Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing. Morristown. NJ, USA: Association for Computational Linguistics. 2005: 34-35.
  • 5DAVE K, LAWRENCE S, DPENNOCK M. Mining the peanut gallery: Opinion extraction and semantic classification of product reviews[ C]// Proceedings of the 12th International Conference on World Wide Web. New York: ACM Press, 2003:519-528.
  • 6NASUKAWA T, YI J. Sentiment analysis: Capturing favorability using natural language processing[C]//Proceedings of the 2nd International Conference on Knowledge Capture. New York: ACM Press, 2003:70-77.
  • 7HU M, LIU B. Mining opinion features in customer reviews[ C]// Proceedings of the 19th National Conference on Artificial Intelligence: AAAI 2004. Menlo Park, California: AAAI Press, 2004: 755 - 760.
  • 8HU M, LIU B. Mining and summarizing customer reviews[ C]// Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery And Data Mining. New York: ACM Press, 2004:168 - 177.
  • 9JINDAL N, LIU B. Identifying comparative sentences in text documents[ C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2006:244-251.
  • 10MATSUMOTO S. TAKAMURA H, OKUMURA M. Sentiment classification using word sub-sequences and dependency sub-trees [ C]// Proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 3518. Berlin: Springer- Verlag, 2005:301-311.

共引文献72

同被引文献5

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部