期刊文献+

基于无标度网络的大学生社交网络模型 被引量:1

A Model of College Students' Social Network Based on Scale-free Networks
下载PDF
导出
摘要 在BA(Barab Albert)无标度网络模型的基础上,考虑大学生社交网络初始状态的特点,加入网络初始状态规模大小影响因素m,可以随机变化并不是初始为1。传统的BA模型在其增长过程中择优选择是基于全局的,而现实中这样对于大学生社交来说基于全局择优成本太高而不现实,所以我们在改进后的BA模型中采用局部寻优算法,这样能大大接近实际的效果。最后通过数值仿真实验验证了该模型依然具备无标度网络特性,利用它可以更真实地模拟与刻画大学生社交网络及其特征,这对分析大学生社交和成长具有重要的教育和指导意义。 In the BA scale-free network model(Barab Albert), on the basis of considering the characteristics of college students' social network initial state, initial state to join the network size m.Traditional BA preferred choice in the process of its growth model is based on the global, and reality so for college students' social cost is too high, so in this improved model using local optimization, so more practical.Finally the model is verified by numerical simulation experiment is scale-free network features, using it can more truly simulate and depict college students' social network and its characteristics, the analysis of college students' social and growth of the education and guidance significance.
出处 《电脑知识与技术》 2016年第2Z期250-252,共3页 Computer Knowledge and Technology
关键词 无标度网络 大学生 社交网络 模型 BA模型 Scale-free College Student Social Network BA Model
  • 相关文献

参考文献2

二级参考文献18

  • 1[1]Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999,286:509 -512.
  • 2[2]Barabási A L,Albert R,Jeong H. Mean-field theory for scale-free random networks[J]. Physica A ,1999 ,272 :173 - 187.
  • 3[3]Barabási A L, Albert R,Jeong H, et al. Power-law distribution of the world wide web[J]. Science,2000,287:2115.
  • 4[4]Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002,74 (1): 47 -98.
  • 5[5]Krapivsky P L, Redner S,Leyvraz F. Connectivity of growing random networks[J]. Phys Rev Lett, 2000,85:4 629 -4 632.
  • 6[6]Dorogovstsev S N, Mendes J F F. Scaling properties of scale-free evolving networks: continuous approach [J]. Phys Rev E,2001,63:056125.
  • 7[7]Dorogovstsev S N,Mendes J F F. Evolution of reference networks with aging[J]. Phys Rev E, 2000,62:1 842 -1 847.
  • 8[8]Bianconi G, Barabasi A L. Topology of evolving networks:local events and universality[ J]. Phys Rev Lett,2000(85): 5 234 -5 237.
  • 9[11]Dorogovtsev S N,Mendes J F F. Evolution of Networks[M]. Oxford University Press, 2003.
  • 10[12]B ianconi G, Barabasi A L. Competition and multiscaling in evolving networks[ J]. Europhysics Letters , 2001,54 (4): 436 -442.

共引文献17

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部