期刊文献+

基于社交网络的用户需求发现与物品推荐

Users' Interests Exploration and Products Recommendation in Social Networks
下载PDF
导出
摘要 微博作为当下最受欢迎的社交网络之一,包含了大量的用户需求和兴趣偏好信息,如何动态地从微博内容中提取用户的需求和偏好信息,将推荐算法结合社交网络产生推荐结果,解决信息过载的问题,目前暂时还没有相关的较为成熟的应用。本文设计并实现了基于社交网络的物品推荐系统,提取用户微博内容关键词作为用户需求特征,建立物品信息库,通过文本相似度计算用户需求和物品信息之间的匹配度,采用基于内容的推荐算法产生推荐结果。最后进行离线实验,对推荐系统产生的推荐结果进行评测分析。 Microblog is one of the most popular social networks, containing plenty of information of users' preference and needs. However, there are still no mature applications to extract the information of users' preference and needs from microblogs and combine those with recommendation algorithms to recommend items. Thus, this paper proposes and implements a recommendation system for social networks. First of all, users' content of weibo was crawled and keywords were extracted as characteristics of users' needs. Next, an item repository was built with specific characteristics of the items. Using the text similarity algorithm, similarity between users' needs and items' characteristics can be computed. Then with the content-based recommendation algorithm, we produced recommendation results for users which they may be interested in. At last four offline experiments on the recommendation results were done to evaluate and analyze the performance of this recommendation system.
作者 林梦迪
机构地区 同济大学
出处 《电脑知识与技术》 2016年第8X期260-262,268,共4页 Computer Knowledge and Technology
关键词 社交网络 用户需求 基于物品推荐算法 微博 social networks users' interests content-based recommendation algorithm Microblog
  • 相关文献

参考文献2

二级参考文献101

  • 1印鉴,陈忆群,张钢.搜索引擎技术研究与发展[J].计算机工程,2005,31(14):54-56. 被引量:53
  • 2陈刚,卢炎生.BBS搜索引擎设计与实现[J].微计算机信息,2006,22(06X):34-36. 被引量:4
  • 3Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 4Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 5梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 6Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 8Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 9Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 10Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87

共引文献471

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部