期刊文献+

云环境中基于海量签到数据的并行地点推荐算法研究

下载PDF
导出
摘要 目的:提出一种基于Map Reduce架构的并行推荐算法,提高在超大规模且结构复杂的数据集中的推荐效率。方法:在Map Reduce并行计算模型中分析用户访问真实地理位置的行为轨迹,将用户的签到行为量化为用户对签到地点的喜好程度,综合分析用户间的相同签到记录及不同用户对签到地点的偏好程度,计算用户间的相似性,实现个性化地点推荐。利用Gowalla和Foutsquare社交网站真实的签到数据集进行实验验证。结果:推荐结果在召回率及精度上均优于传统的协同过滤推荐算法且具有较高的加速比。结论:该推荐算法具有良好的可扩展性及高效的执行性能,能够适用于云计算环境中针对海量数据的推荐。
机构地区 沈阳建筑大学
出处 《电脑知识与技术》 2016年第12X期12-13,共2页 Computer Knowledge and Technology
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部