期刊文献+

Android智能终端二维码安全检测系统的设计与实现 被引量:5

Design and Implementation of QR Code Security Detection System Based on the Android Intelligent Terminal
下载PDF
导出
摘要 随着二维码技术的应用与推广,二维码已成为病毒传播的新通道,如钓鱼网站、手机病毒、恶意程序等通过二维码传播的潜在风险日益严重。文中分别分析了恶意钓鱼网站、跨站脚本攻击和恶意APP应用下载等攻击方式的特点,设计并实现了一个全方位深层次的二维码安全检测系统。为提高查询效率,该系统将黑白名单同时保存在客户端服务器端进行黑/白名单检测、并重点针对恶意钓鱼网站采用文本相似度算法、SIFT(尺度不变特征检测)匹配算法、SVM(支持向量机)进行综合分析。该系统不仅可以应用于普通用户的日常扫码行为,同时该系统可被政府机构二维码安全监管提供参考工具。 With the application and popularization of QR code technology, QR code has become a new way of the spread of the mobile phone virus. For example, problems like the potential risk for the transmission of fishing websites, mobile phone virus and malicious programs through the way of QR code is becoming more and more serious. This paper respectively analyzes the features of malicious phishing sites, CSS(cross-site scripting) attacks and malwares, designs and implements a comprehensive QR code security detection system. To improve the efficiency of the system, blacklists and whitelists are saved in both client and server which are used to check whether the URL is on any of both lists. And this paper focuses on malicious phishing sites, using the algorithm of text similarity, SIFT(scale invariant feature transform) and SVM(support vector machine) for comprehensive analysis. This system can be applied to the daily scanning behaviors of normal users. This system can not only be applied to the daily QR code-scan behaviors of normal users, but also be provided as a reference tool for QR code security supervision by government agencies as well.
出处 《电脑知识与技术(过刊)》 2017年第3X期61-64,共4页 Computer Knowledge and Technology
关键词 二维码安全检测 黑/白名单检测 文本相似度算法 SVM SIFT算法 QR code security detection blacklists and whitelists detection text similarity SIFT SVM
  • 相关文献

参考文献4

二级参考文献28

  • 1Anti-Phishing Working Group [EB/OL]. http://www.antiphishing. org, 2008-01/2011-12-15.
  • 2PhishTank [EB/OL]. http://www.phishtank.com, 2011-04/2011-12-15.
  • 3Engin Kirda, Christopher Kruegel. Protecting Users against Phishing Attacks[J]. The Computer Journal, 2006, 49(05):554-561.
  • 4Ian Fette, Norman Sadeh, Anthony Tomasic. Learning to Detect Phishing Emails[C]. In Proc. of the WWW 2007, Alberta, Canada, May 8-12, 2007: 649-656.
  • 5Chenfeng Vincent Zhou, Christopher Leckie, Shanika Karunasekera. Collaborative Detection of Fast Flux Phishing Domains[J]. Journal of Networks, 2009, 4(01):75-84.
  • 6D. Kevin McGrath, Minaxi Gupta. Behind Phishing: An Examination of Phisher Modi Operandi[C]. In Proc. of the 1st Usenix Workshop on Large- Scale Exploits and Emergent Threats, California USA, April 15 2008:1-8.
  • 7Tyler Moore, Richard Clayton. The Impact of Incentives on Notice and Take-down[C]. In Proc. of the 7th Workshop on the Economics of Information Security, New Hampshire USA, June 25-28 2007: 1-24.
  • 8Christian Ludl, Sean McAUister, Engin Kirda,et al.. On the Effectiveness of Techniques to Detect Phishing Sites[C]. In Proc. of the 4th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Lucerne Switzerland, July 12-13 2007:20-39.
  • 9Steve Sheng, Brad Wardman, Gary Warner, et al.. An Empirical Analysis of Phishing Blacklists[C]. In Proc. of the sixth Conference on Email and Anti-Spare, California USA, July 16-17 2009.
  • 10Pawan Prakash, Manish Kumar, Ramana Rao Kompella, et al.. PhishNet: Predictive Blacklisting to Detect Phishing Attacks[C]. In Proc. of the IEEE INFOCOM, San Diego Canada, March 14-19 201011-5.

共引文献58

同被引文献21

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部