摘要
目前我国已经进入老龄化社会,慢性病患者人数居世界之首。根据2015年中国卫生部门提供的数据,中国的糖尿病病人有1.14亿,而2010年是9200万。除了不断增加的糖尿病病人外,还有1.5亿人属于糖尿病前期,说明中国一共血糖不正常的人有2.64亿。此外,还有存在糖尿病高危人群,他们是诸如有糖尿病家族史的人、老年人、肥胖人士、功能代谢紊乱者等。可以说,直接受到糖尿病威胁的人有6.64亿。这一事实表明在糖尿病检测方面,现有的方法还是有很多不足。然而,随着大数据的发展,数据挖掘的方法已经被应用到其他科学领域,并取得了不错的效果。同时有一些研究者已经将神经网络,支持向量机这些常用的数据挖掘的方法应用到医疗数据中,来帮助医生检测病人。因此,本文尝试用数据挖掘中的混合高斯模型来帮助医生检测糖尿病患者。糖尿病或简单的糖尿病是由于血糖升高引起的疾病。虽然基于物理和化学测试的各种传统方法可用于诊断糖尿病,但是诊断过程繁琐,化验成本高,诊断周期长。在本文中,我们采用混合高斯模型来完成糖尿病的早期预测。该模型在我们的训练集上达到了98%的准确率,测试集上达到了83%的准确率,验证了该方法的可行性。
出处
《电脑知识与技术(过刊)》
2017年第4X期1-2,共2页
Computer Knowledge and Technology