期刊文献+

基于R语言的视频网站用户在线行为分析 被引量:1

Analysis of Online User Behavior of Video Website Based on R Language
下载PDF
导出
摘要 基于所采集的某视频网站用户访问行为数据,重点从浏览量和访问次数等两个引流指标以及转化率、跳出率和视频类型喜好等三个粘性指标进行了深入分析挖掘。发现了隐藏在数据背后的用户访问行为规律,包括浏览量变化的影响因素,用户访问网站的时间规律,转化率与等待时间的相关关系,对视频网站的兴趣程度以及对不同视频类型的偏好等。根据所获取的用户访问习惯,提出了网站改进的相关建议以吸引并留住更多用户,改善其使用体验,促进视频网站的快速发展。 Based on the acquisition of a video site user access behavior data, according to diversion indicators including the page view and visits and sticky indicators including conversion rate, bounce rate and video type preferences data analysis and mining are carried out in-depth. User behavior patterns of video website are found behind the data. The patterns include the influencing factors of the page view, the time of the user's visit to the website, the relationship between conversion rate and waiting time, the degree of user's interest in the video site, and the preference for different video types. Based on the user's access habits, suggestions are made to improve the website to attract and retain more users. So this could improve the experience of user and promote the rapid development of video sites.
作者 吴柳
出处 《电脑知识与技术(过刊)》 2017年第4X期187-190,共4页 Computer Knowledge and Technology
关键词 数据分析与挖掘 在线行为分析 引流指标 粘性指标 网站优化 data analysis and mining online behavior analysis diversion indicator sticky indicator website optimization
  • 相关文献

参考文献6

二级参考文献86

  • 1吴跃进.综合多重评价因素的Web用户聚类算法[J].计算机工程与应用,2006,42(28):147-149. 被引量:4
  • 2刘宏鲲,周涛.中国城市航空网络的实证研究与分析[J].物理学报,2007,56(1):106-112. 被引量:144
  • 3石晶,戴国忠.基于PLSA模型的文本分割[J].计算机研究与发展,2007,44(2):242-248. 被引量:25
  • 4Clement, T, Plaisant, C, & Vuillemot, R. The story of one: Humanity scholarship with visualization and text analysis Tech Report HCIL-2008-33 [Z]. College Park, MD: University of Maryland, Human-Computer Interaction Lab 2008.
  • 5Rozen-Zvi M, Griffiths T, Steyvers M, etnl. The author-topic model for authors and documents [C]. Proceedings of the 20th International Conference on Uncertainty in AI. July,2000.
  • 6Lavrenko V, Allan J, DeGuzman E, etal. Relevance models for topic detection and tracking[C]. Proceedings of the Second International Conference on Human Language Technology Research.March 2002:24-27.
  • 7PaulTeetor著,李洪成,朱文佳,沈毅诚译.RCookbook[M].北京:机械工业出版社,2013.
  • 8[美]RobertI.Kabacoff著,高涛,肖楠,陈钢译.R in Action:Data Analysis[M].北京:人民邮电出版社,2013.
  • 9Barabdsi A-L. The origin of bursts and heavy tails in human dynamics[J]. Nature 2005, 435: 207 - 211.
  • 10Huang Z, Zeng D, Chen H. Analyzing consumer-product graphs: Empirical findings and applications in recommender systems[J]. Management Science, 2007, 53: 1146 - 1164.

共引文献39

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部