摘要
光场相机能够通过一次拍摄获取包含空间和角度的四维信息。然而,光场图像空间分辨率较低,角度分辨率也无法满足应用需求。针对此问题,提出一种基于卷积神经网络的光场图像超分辨率重建方法,同时提高光场图像的空间分辨率和角度分辨率。首先通过空间分辨率重建网络恢复子孔径图像的高频细节,然后根据子孔径图像位置,设计三种不同的角度分辨率重建网络在子孔径图像间插入新的视角。实验结果表明,该文方法与其他先进方法相比,在定性和定量评价方面均取得较好的重建效果。
Light-field cameras capture 2D spatial and 2D angular information in a single shot. Nevertheless, the spatial resolutions of images rendered from light-field camera are relatively low. Besides, angular resolutions cannot meet application requirements given the limited number of viewpoints. In this paper, we present a novel light-field super-resolution(SR) method to simultaneously enhance both the spatial and angular resolutions of a light field image using a Convolutional Neural Network(CNN).We first augment the spatial resolution of each sub-aperture image by a spatial SR network, then novel views between super-resolved sub-aperture images are generated by three different angular SR networks according to the novel view locations. Experimental results demonstrate that in terms of visual effects and evaluation metrics, the reconstruction results of the proposed methods is superior to those of state-of-the-art methods.
出处
《电脑知识与技术》
2017年第4X期171-173,共3页
Computer Knowledge and Technology
关键词
超分辨率重建
光场
卷积神经网络
空间分辨率
角度分辨率
Super-resolution
Light-field
Convolutional neural network
Spatial resolution
Angular resolution