期刊文献+

具有时滞的SIQR计算机病毒模型的稳定性分析 被引量:1

Stability Analysis of Delayed SIQR Computer Virus Model
下载PDF
导出
摘要 建立一类具有非线性发生率和时滞的SIQR计算机病毒模型,得到决定病毒消失或继续存在的基本再生数.通过分析系统对应的特征方程,得到无病平衡点与地方平衡点的局部稳定性.通过构造适当的Lyapunov函数,利用La Salle不变原理,证明当基本再生数小于1时,无病平衡点是全局渐近稳定的。 In this paper, A delayed SIQR computer virus e model is proposed. the basic reproduction number is determining whether the disease dies is found, and the existence of the model is discussed. By analyzing the corresponding characteristic equation.the local stability of a disease-free equilibrium and endemic equilibrium are discussed. According to the suitable Lyapunov function and La Salle invariance principle, it is proved that the disease-free equilibrium is globally asymptotically stable as the basic reproduction number for viral infection is less than unity.
出处 《电脑知识与技术(过刊)》 2017年第5X期59-61,共3页 Computer Knowledge and Technology
基金 黔教合KY字[2016]306 黔东南科合J字[2016]001 凯里学院校级重点建设项目(数学:KZD2014004)
关键词 时滞 传染病模型 全局稳定性 LYAPUNOV函数 基本再生数 time delay epidemic model global stability Lyapunov Function basic reproduction number
  • 相关文献

参考文献4

二级参考文献54

  • 1Ma Z E, LiJ. Dynamical Modeling and Analysis of Epidemics[MJ. World Scientific, 2009.
  • 2Capasso V, Serio G. A generalization of the Kennack-McKendrick deterministic epidemic model[J].MathematicalBiosciences, 1978,42(112): 43-6l.
  • 3Liu W M, Levin S A, Iwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J].Journal of Mathematical Biology, 1986, 23 ( 2): 187-204.
  • 4Gao SJ, Chen L S, NietoJ J, Torres A. Analysis of a delayed epidemic model with pulse vac?cination and saturation incidence[J]. Vaccine, 2006, 24( 35/36) : 6037-6045.
  • 5Korobeinikov A, Maini P K. Nonlinear incidence and stability of infectious disease models[J] . Mathematical Medicine and Biology, 2005, 22( 2): 113-128.
  • 6Cooke K L. Stability analysis for a vector disease model[J]. Rocky MountainJournal of Mathematics, 1979,9(1): 31-42.
  • 7Xu R, Ma Z E. Stability of a delayed SIRS epidemic model with a nonlinear incidence rate[J] . Chaos Solutions and Fractals, 2009, 41 (5) : 2319-2325.
  • 8Huang G, Takeuchi Y, Ma W B , Wei DJ. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate[J]. Bulletin of Mathematical Biology, 2010, 72 ( 5) : 1192-1207.
  • 9Beretta E, Takeuchi Y. Convergence results in SIR epidemic models with varying population size[J]. Nonlinear Analysis: Theory, Method and Applications, 1997, 28( 12): 1909-1921.
  • 10Takeuchi Y, Ma W B, Beretta E. Global asymptotic properties of a delay SIR epidemic model with finite incubation times[J]. Nonlinear Analysis: Theory, Methods and Applications, 2000,42(6): 931-947.

共引文献24

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部