期刊文献+

机器学习算法在用户行为中的应用 被引量:3

Machine Learning Algorithms in the Application of user Behavior
下载PDF
导出
摘要 机器学习是人工智能相关领域中与算法相关的一个子域,是解决人工智能问题的一个途径,它允许计算机不停的模拟人的思考方式进行学习,来发掘出隐藏在数据背后的模型,并能对不完全信息进行推理,来构造新事物。目前机器学习的应用主要集中在数据挖掘,计算机视觉,自然语言处理,模式识别,搜索引擎等。文中将机器学习中的算法决策树C4.5,随机森林,贝叶斯网络应用到电商用户行为数据的挖掘中,解决用户行为属性与用户收入水平的分类情况问题;通过三种算法对用户行为的研究,得出决策树C4.5算法在用户收入分类上要优于后两种。 Machine learning is in the related fields of artificial intelligence related to the algorithm a child domain,is a way to solve the problem of artificial intelligence,it allows computer simulation human way of thinking in learning,to dig the hidden data model,and reasoning with incomplete information,and to construct the new things.The mainly concentrated in machine learning application are the data mining,computer vision,natural language processing,pattern recognition,search engines,etc.This paper,will be use the machine learning algorithm of decision tree C4.5,random forests and bayesian networks in electricity user's behavior data mining,solving the user behavior properties and classification of user levels of income;The study of user behavior through three algorithms,it is concluded that the decision tree C4.5 algorithm on user revenue classification is better than two.
作者 王芳 申贵成
出处 《电脑知识与技术(过刊)》 2017年第9X期180-182,共3页 Computer Knowledge and Technology
基金 基金项目:智能物流实验室北京市重点实验室(NO:BZ0211)
关键词 机器学习 用户行为 C4.5算法 随机森林 贝叶斯网络 Machine learning user behavior C4.5 algorithm random forests bayesian networks
  • 相关文献

参考文献3

二级参考文献24

  • 1沈自尹 王文健.中医虚症辨证参考标准[J].中西医结合杂志,1986,6(10):598-598.
  • 2中华医学会老年医学学会.中华医学会老年医学学会对健康老年人标准的建议(修订草案)[J].中华老年医学杂志,1996,15(2):9-9.
  • 3Moore AW, Zuev D. Internet traffic classification using Bayesian analysis techniques. In: Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems, Banff, 2005. 50-60. http://www.cl.cam.ac.uk/-awm22 /publications/moore2005internet.pdf.
  • 4Madhukar A, Williamson C. A longitudinal study of P2P traffic classification. In: Proc. of the 14th IEEE Int'l Syrup. on Modeling, Analysis, and Simulation. Monterey, 2006. http://ieeexplore.ieee.org/xpl/ffeeabs_all.jsp?arnumber=1698549.
  • 5Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005.41-54.
  • 6Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. In: Proc. of the ACM SIGCOMM. Philadelphia, 2005. 229-240. http://conferences.sigcomm.org/sigcomm/2005/paper-KarPap.pdf.
  • 7Roughan M, Sen S, Spatscheck O, Dutfield N. Class-of-Service mapping for QoS: A statistical signature-based approach to IP traffic classification. In: Proc. of the ACM SIGCOMM Internet Measurement Conf. Taormina, 2004. 135-148. http://www.imconf.net/imc-2004/papers/p 135-roughan.pdf.
  • 8Zuev D, Moore AW. Traffic classification using a statistical approach. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005. 321-324.
  • 9Nguyen T, Armitage G. Training on multiple sub-flows to optimise the use of Machine Learning classifiers in real-world IP networks. In: Proc. of the 31 st IEEE LCN 2006. Tampa, 2006. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4116573.
  • 10Eerman J, Mahanti A, Arlitt M. Internct traffic identification using machine learning techniques. In: Proc. of the 49th IEEE GLOBECOM. San Francisco, 2006. http://pages.cpsc.ucalgary.ca/-mahanti/papers/globecom06.pdf.

共引文献203

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部