期刊文献+

基于变异系数的SOM算法在多维分析中的应用研究

Research on SVM Algorithm Based on Variation Coefficient in Multidimensional Analysis
下载PDF
导出
摘要 在多维分析领域,自组织映射SOM算法是一种无导师学习方法,具有降维,自组织的,可视化等特性,由于SOM算法计算获胜神经元采用欧式距离的原因,忽略了不同维度对于相似度的贡献,针对该不足,该文采用变异系数对维度权重进行研究和改进SOM算法。实践证明:相比没有维度权重的SOM算法,采用带有指标权重的SOM算法具有更好的准确率和凝聚度。 In the field of multidimensional analysis, the self-organizing mapping SOM algorithm is a kind of no-tutor learning method, which has the characteristics of dimension reduction, self-organization and visualization. Because the SOM algorithm calculates the distance of the winning neurons using Euclidean distance, This paper uses the coefficient of variation to study the dimension weight and improve the SOM algorithm. It is proved that compared with the SOM algorithm without dimension weight, the SOM algorithm with the index weight has better accuracy and cohesion.
作者 陈维民
机构地区 北方工业大学
出处 《电脑知识与技术(过刊)》 2017年第11X期122-125,共4页 Computer Knowledge and Technology
关键词 降维 自组织映射(SOM) 变异系数 权值更新 dimensionality Self-Organizing Map(SOM) variation coefficient weight update
  • 相关文献

参考文献10

二级参考文献108

共引文献165

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部