期刊文献+

室内图像中家具多标签标注的实现

A Method of Dense Furniture Caption for Indoor Images
下载PDF
导出
摘要 在基于图像进行家居虚拟设计的应用中,由于图像缺乏场景的深度信息、物体之间存在相互遮挡等问题,给获取图像信息带来一定的挑战。该文利用深度学习技术,提出了一种结合卷积神经网络和循环神经网络的方法,对室内图像进行特征提取,实现家具的多标签标注,以获取家具的属性信息,包括种类、位置、颜色和材质等。结果表明,该方法提高了虚拟展示内容的丰富性和精确性,为家居智能交互作了很好的铺垫。 In the application of image-based virtual house design system,it becomes a huge challenge to obtaining rich information from images because of some problems such as the lack of scene depth and the occlusion between objects.With the development of deep learning,this paper proposes a method of dense furniture caption for indoor images,which combines CNN and RNN to extract features.It can get multiple information of furniture,such as classification,location,color,material,etc.The result indicates that the method improves the richness and accuracy of furniture information,which makes a great contribution to virtual house design system.
作者 马天瑶
出处 《电脑知识与技术(过刊)》 2017年第12X期219-221,共3页 Computer Knowledge and Technology
关键词 深度学习 图像标注 卷积神经网络 循环神经网络 Faster R-CNN deep learning image caption CNN RNN Faster R-CNN
  • 相关文献

参考文献1

二级参考文献19

  • 1Zhang Bo, Xie Ning, Xu Hao, et al. Web3D CID: Web3Dcollaborative interior design based on transparent adapta-tion[C]//Proceedings ofthe 13thACM SIGGRAPH Interna-tional Conference on Wtual-Reality Continuum and its Appli-cations in Industry, Shenzhen, China, Nov 30-Dec 2,2014.New York, USA: ACM, 2014: 113-121.
  • 2Houzz. Desgin home online[EB/OL]. [2015-08-03] http://www.houzz.com.
  • 3Hedau V,Hoiem D, Forsyth D. Recovering the spatial lay-out of cluttered rooms[C]//Proceedings of the 2009 IEEE12th International Conference on Computer Vision, Kyoto,Japan, 2009. Piscataway, USA: IEEE, 2009: 1849-1856.
  • 4Bao S Y,Furlan A, Li Feifei, et al. Understanding the 3Dlayout of a cluttered room from multiple images [C]//Pro-ceedings of the 2014 IEEE Winter Conference on Applica-tions of Computer Vision, Steamboat Springs, USA,Mar24-26,2014. Piscataway, USA: IEEE,2014: 690-697.
  • 5Yang Hao, Zhang Hui. Indoor structure understanding fromsingle 360 cylindrical panoramic image[C]//Proceedings ofthe 2013 International Conference on Computer-Aided De-sign and Computer Graphics, Guangzhou, China, Nov 16-18,2013. Piscataway, USA: IEEE,2013: 421-422.
  • 6Jia Hanchao, Li Shigang. Estimating the structure of roomsfrom a single fisheye image[C]//Proceedings of the 20132nd IAPR Asian Conference on Pattern Recognition,Naha,Japan, Nov 5-8, 2013. Piscataway, USA: IEEE, 2013: 818-822.
  • 7Rother C. A new approach to vanishing point detection inarchitectural environments[J]. Image and Vision Computing,2002, 20(9): 647-655.
  • 8Zhang Jian, Kan Chen, Schwing A G, et al. Estimating the3D layout of indoor scenes and its clutter from depth sen-sors[C]//Proceedings of the 2013 IEEE International Con-ference on Computer Vision, Sydney, Australia, 2013. Pis-cataway, USA: IEEE, 2013: 1273-1280.
  • 9Gupta A,Efros A A,Hebert M. Blocks world revisited: im-age understanding using qualitative geometry and mechan-ics[C]//LNCS 6314: Proceedings of the 11th European Con-ference on Computer Vision, Heraklion, Greece, Sep 5-11,2010.Berlin, Heidelberg: Springer, 2010: 482-496.
  • 10Chen Tao,Zhu Zhe, Shamir A, et al. 3-Sweep: extracting edi-table objects from a single photo[J]. ACM Transactions onGraphics, 2013’ 32(6): 195.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部