期刊文献+

基于字典学习的图像去噪研究 被引量:1

Research on Image Denoising Based on Dictionary Learning
下载PDF
导出
摘要 为了克服传统方法去噪会损失部分有用信息的缺点,该文采用稀疏编码和字典训练两个关键技术,准确又高效地区分开图像的有用信号和噪声信号,更好地实现了去噪。针对字典训练的过程利用了K-SVD算法,研究了其原理和去噪流程,由于字典学习是通过机器学习获得而不是预先选定得到的,从而可以更完整地保留图像原有的信息,最终获取更高的峰值信噪比。通过对不同算法的仿真分析,验证了该方法的有效性。 In order to overcome the disadvantages of the traditional methods denoising which lead to lose some of effective information,sparse coding and dictionary training are used as two key technologies. This method can distinguish the effective signal and noise signal of the image accurately and efficiently, and better realize the denoising.In view of the K-SVD algorithm that is used in dictionary training, the principle and denoising process are researched.Since dictionary learning is obtained by machine learning rather than pre-selected, it can not only better reserve the original information of the image, but also achieve higher Peak Signal to Noise Ratioultimately.The effectiveness of the method is verified by simulation analysis of different algorithms.
作者 程春燕
出处 《电脑知识与技术》 2018年第1Z期164-165,共2页 Computer Knowledge and Technology
关键词 机器学习 字典学习 稀疏表示 K-SVD 图像去噪 machine learning dictionary learning sparse representation K-SVD image denoising
  • 相关文献

参考文献2

二级参考文献146

  • 1张海,王尧,常象宇,徐宗本.L_(1/2)正则化[J].中国科学:信息科学,2010,40(3):412-422. 被引量:15
  • 2刘艳,李宏东.DCT域图象处理和特征提取技术[J].中国图象图形学报(A辑),2003,8(2):121-128. 被引量:21
  • 3M Etad, M Aharon. Image denoising via sparse and redundantrepresention over learned dictionaries[J]. IEEE Trans on Image Processing, 2006,15 (12) : 3736-3745.
  • 4D L Donoho. Denoising by soft thresholding[J]. IEEE Trans onInformation Theory, 1995,41(3) : 613-627.
  • 5Portilla, V Strela. Image denoising using scale mixtures of Guassians in the wavelet domain [J].IEEE Trans on Image Processing, 2003,12(11) : 1338-1351.
  • 6MALLAT S,ZHANG Z. Matching pursuits with time-frequen- cy dictionaties[J].IEEE transactions on Signal Processing, 1993,41 (12) : 3397-3415.
  • 7COIFMAN R. WICKERHAUSER M. Entropy based algo- rithms for best basis selection[J]. IEEE Transaction on Infor- mation Theory, 1992. 38(2):713-718.
  • 8PATI Y C, REZAIIFAR R, KRISHAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with appli- cations to wavelet decomposition[C]//Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, and Comput-ers,1993,1:40-44.
  • 9CHEN S, I)ONOHO D, SAUNDERS M. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing, 1999,20(1) :33-61.
  • 10Micheal Elad. Sparse and Redundant Representations [M]. Springer Science l-Business Media, 2010: 227-258.

共引文献126

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部