期刊文献+

运动目标检测和跟踪算法综述 被引量:4

A summary of Moving Target Detection and Tracking Algorithm
下载PDF
导出
摘要 运动目标检测和跟踪在多媒体图像、视频监控等方面有普遍应用。多年来,人们在该领域进行了大量的、深入的研究,发表了大量显著性的成果。但目标被遮挡、尺度变化以及光照变化仍然对跟踪结果存在较大影响。为解决这些问题,研究人员仍然在研究如何能构造一个鲁棒性好的跟踪算法。该文主要对近年来常见的运动目标检测和跟踪算法的发展做了简单叙述。简单分析了运动目标检测的帧间差分法、背景减法、光流法的原理;描述了运动目标跟踪所用的Meanshift算法、Kalman滤波器、粒子滤波方法;最后对压缩感知理论进行简介,并对基于该理论的两种算法:稀疏表示的目标跟踪算法和实时压缩感知目标跟踪算法做出系统的描述。 Moving target detection and tracking are widely used in multimedia images, video surveillance,etc. Over the years, peoplehave done a lot of in-depth research in this field, and published a lot of significant results. However, target occlusion, scale changeand illumination change still have a great impact on tracking results. To solve these problems, researchers are still studying how toconstruct a robust tracking algorithm. In this paper, we briefly describe the development of common algorithms for moving objectdetection and tracking in recent years. The principle of frame difference method, background subtraction and optical flow methodfor moving object detection is simply analyzed. The Meanshift algorithm, Kalman filter and particle filter method for moving targettracking are described. In the end, a brief introduction to the theory of compressed sensing is made. And two algorithms based onthis theory are described: sparse representation tracking and compressive tracking.
作者 王慧
机构地区 安徽三联学院
出处 《电脑知识与技术》 2018年第8X期194-197,共4页 Computer Knowledge and Technology
基金 安徽三联学院校级科研基金自然科学重点项目:中医经络按摩机器人视觉系统研究(KJZD2017009)
关键词 运动目标检测 运动目标跟踪 压缩感知 稀疏表示 特征提取 moving target detection moving target tracking compressed sensing sparse representation feature extraction
  • 相关文献

参考文献1

二级参考文献9

  • 1Mei Xue, Ling Haibin. Robust visual tracking using l1, mini- mization[C]//Proceedings of the IEEE 12th International Conference on Computer Vision (ICCV 2009), Kyoto, Ja- pan, 2009:1436-1443.
  • 2Mei Xue, Ling Haibin, Yi Wu, et al. Miniraum error bounded efficient l, tracker with occlusion detection[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pat- tern Recognition (CVPR 2011), Providence, USA, 2011: 1257-1264.
  • 3Mei Xue, Ling Haibin. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2011 33( 11 ): 2259-2272.
  • 4Candes E J, Wakin M B. An introduction to compressive sampling[J]. 1EEE Signal Processing Magazine, 2008, 25(2): 21-30.
  • 5Candes E J, Romberg J, Tao T. Robust uncertainty princi- pies: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Informa- tion Theory, 2006, 52(2): 489-509.
  • 6Yang Meng, Zhang Lei, Yang Jian, et al. Robust sparse coding for face recognition[C]//Proceedings of the 2011 IEEE Con- ference on Computer Vision and Pattern Recognition (CVPR 2011), Providence, USA, 2011 : 625-632.
  • 7Yang Y A, Sastry S S, Ganesh A, et al. Fastl1-minimization algorithms and an application in robust face recognition: a review, UCB/EECS-2010-13[R]. University of California at Berkeley, 2010: 1-12.
  • 8Cevher V, Sankaranarayanan A, Duarte M F, et al. Compres- sive sensing for background subtraction[C]//Proceedings of the lOth European Conference on Computer Vision (ECCV 2008), Marseille, France, 2008: 155-168.
  • 9Zhang Lei, Yang Meng, Feng Xiangchu. Sparse representa- tion or collaborative representation: which helps face recog- nition?[C]//Proceedings of the IEEE 13th International Con- ference on Computer Vision (ICCV 2011), Barcelona, Spain, 2011: 471-478.

共引文献2

同被引文献26

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部