期刊文献+

基于改进Hough变换的直线检测方法研究 被引量:1

Research on the Method of Line Detection Based on Improved Hough Transform
下载PDF
导出
摘要 Hough变换不仅可以用来检测规则的直线,也可以对其他许多形状的物体进行识别,但由于阈值设定的问题对短直线的检测会受到长直线的影响而效果不好,且该变换仅检测直线,无法记录检测直线的起始点和终止点。为此,该文提出一种改进过的Hough变换算法更好的检测遥感图像中的直线。 Hough transform can be used not only to detect straight lines, but also to identify many other objects. However, due to the problem of threshold setting, the detection of short straight line will be affected by the long straight line and the result is not good. And the transformation only detects the straight line, and can not record the starting point and ending point of the detection line. For this reason, this paper proposes an improved Hough transform algorithm to detect straight lines in remote sensing images better.
出处 《电脑知识与技术》 2018年第9Z期157-158,161,共3页 Computer Knowledge and Technology
基金 江苏省大学生创新创业训练计划项目(201810300005Z) 现代教育技术研究项目(2017-R-54766) 校级教育教学研究立项课题(YGJ1718) 校级大学生创新创业训练计划项目(xcx2018088)
关键词 HOUGH变换 检测直线 Hough transformation Aightline detection
  • 相关文献

参考文献3

二级参考文献23

  • 1武冰,周石琳,粟毅.一种引入角点特征的遥感图像道路提取方法[J].计算机仿真,2006,23(10):209-213. 被引量:5
  • 2Cohen I. D, Kimmel R. Global Minimum for Active Con*our Models : a Minimum Path Approach[J]. International Journal of Computer Vision,1997,24(1):57-78.
  • 3Cohen I. D. Multiple Contour Finding and Perceptual Group ing Using Minimum Paths[J]. Journal of Mathematical Imaging and Vision, 2001,14 (3) : 225-236.
  • 4Cohen L D, Deschamps T. Grouping Connected ComponentsUsing Minimum Path Techniques Application to Reconstruc tion of Vessels in 2D and 3D Images[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recogni- tion,CVPR'01,2001.
  • 5Cohen L D. Handbook of Mathcmatica Vision[M]. US.. Springer, 2006,97-111.
  • 6Deschamps T,Cohen L D. Fast Extraction of Minimum Paths in 3D Images and Applications to Virtual Endoscopy[J]. Med ical Image Analysis,2001,5(4) :281-299.
  • 7Fethallah B,Cohen L D. Fast Object Segmentation by Grow ing Minimum Paths from a Single Point on 2D or 3D Images [J]. Journal of Mathematical Imaging and Vision, 2009,33 (2) :201-221.
  • 8Sethian J A. Evolution, Implementation, and Application of Level Set and Fast Marching Methods for Advancing Fronls [J]. Journal of Computational Physics, 2001, 169 (2):503-555.
  • 9Liron Y, Alberto B, Guillermo S. O(N) Implementation of l he Fast Marching Algorithm[J]. Journal of Computational Phys ics,2006,212(2) :393-399.
  • 10S.MALLAT, Wavelet for vision[C], Proc. IEEE,84(4),605-614,1996

共引文献162

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部