摘要
以社交网络中活跃的大学生用户群的QQ空间、说说等文本数据为对象,依据四类基础词库(积极、消极、否定词、程度词),结合Python第三方库Pandas库和matplotlib库,给出了5-LevelEA情绪分析算法。该算法能计算出社交网络文本数据中的多项情绪指标,再通过可视化图表呈现所采集数据中的个人情绪变化趋势以及性别、就业情况等要素作用下的情绪分类数据,具有实用价值。
Based on the QQ space, speaking text data of the active college student user groups in the social network, according to thefour basic lexicons(positive, negative, negative, degree words), combined with the Python third-party library Pandas library andmatplotlib library, A 5-levelEA emotional analysis algorithm is given. The algorithm can calculate a number of emotional indica-tors in the social network text data, and display the emotional classification trends in the collected data and the emotional classifica-tion data under the influence of gender and employment conditions through the visualization chart.The test data shows that the algo-rithm has certain effectiveness.
出处
《电脑知识与技术》
2018年第11Z期3-6,16,共5页
Computer Knowledge and Technology
基金
湖南省教育厅教改项目"基于MOOCs的<数据库原理>多元化教学研究和实践"与湖南省教育厅科研项目"基于MOOCs的混合模式的学习分析研究"(No14C0681)资助