期刊文献+

机器学习分类算法在糖尿病诊断中的应用研究 被引量:7

下载PDF
导出
摘要 机器学习技术在疾病诊断等智能决策问题中起着至关重要的作用,该文主要介绍了机器学习中决策树、随机森林、支持向量机和k近邻算法,并将这四种算法建立的模型运用在糖尿病诊断上,通过参数的优化建立各自的模型,比较这四种模型对医学中的糖尿病数据的诊断价值。然后通过十折交叉验证方法比较这四种模型在该数据上的ROC值,选择最优的模型对糖尿病数据进行分析预测,结果表明,随机森林算法更适合糖尿病数据的预测。
出处 《电脑知识与技术》 2018年第12Z期177-178,195,共3页 Computer Knowledge and Technology
基金 海南省自然科学基金:模式识别算法改进及稀土掺杂TiO2光电性质预测研究(项目编号:20156242)
  • 相关文献

参考文献3

二级参考文献68

  • 1Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:Class discovery and class prediction by gene expression[J].Science,1999,286(5439):531.
  • 2Van't Veer L J,Dai H,Van de Vijver M J,et al.Gene expression profiling predicts clinical outcome of breast cancer[J].Nature,2002,415(6871):530.
  • 3Pomeroy S L,Tamayo P,Gaasenbeek M,et al.Prediction of central nervous system embryonal tumour outcome based on gene expression[J].Nature,2002,415(6870):436-442.
  • 4Alizadeh A A,Eisen M B,Davis R E,et al.Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J].Nature,2000,403:503-511.
  • 5Valafar F.Pattern recognition techniques in microarray data analysis a survey[J].Annals of the New York Academy of Sciences,2002,980(1):41-64.
  • 6Brown Grundy W N,Lin D,Cristianini N,et al.Knowledge-based analysis of microarray gene expression data by using support vector machines[J].Proceedings of the National Academy of Sciences,2000,97(1).
  • 7Shipp M A,Ross K N,Tamayo P,et al.Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning[J].Nature Medicine,2002,8(1):68-74.
  • 8Bhattacharjee A,Richards W G,Staunton J,et al.Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses[C]// Proceedings of the National Academy of Sciences,2005, 21(15):3301-3307.
  • 9Staunton J E,Slonim D K,Coller H A,et al.Chemosensitivity prediction by transcriptional profiling[C]// Proceedings of the National Academy of Sciences,2001,98(19):10787.
  • 10Su A I,Welsh J B,Sapinoso L M,et al.Molecular classification of human carcinomas by use of gene expression signatures[J].Cancer Research,2001,61(20):7388.

共引文献61

同被引文献38

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部