期刊文献+

基于自适应高频谐波LMD法的风电机组故障诊断 被引量:11

Wind Turbine Fault Diagnosis Based on Adaptive High-frequency Harmonics LMD
下载PDF
导出
摘要 针对实际应用中局部均值分解(LMD)法存在的模态混叠问题,提出了自适应高频谐波LMD法.分析了信号中异常事件对求取包络函数和均值函数的影响,将构造的自适应高频谐波加入到原始信号中,通过改变原始信号的极值点位置来抑制模态混叠现象.对含有典型异常事件的信号进行了自适应高频谐波LMD法和ELMD法仿真实验对比,验证了该算法的有效性和优越性.将该算法应用于风电机组传动系统故障诊断中,结果表明:采用该算法后,原有的模态混叠状况得到明显改善,并成功提取出轴系不平衡故障特征,可为风电机组故障诊断提供参考. To solve the mode mixing problem of local mean decomposition(LMD)in actual applications,an adaptive high-frequency harmonics LMD was proposed.The effect of abnormal events on the envelope function and mean function was analyzed,and the adaptive high-frequency harmonics were constructed and added into the signal to deal with the mode mixing problem by changing the distribution of extreme points of the original signal.Simulation comparison was made to signals containing typical abnormal events between adaptive high-frequency harmonics LMD(AHLMD)and ensemble LMD(ELMD),illustrating the effectiveness and superiority of AHLMD,which was subsequently applied to fault diagnosis for the drive train system of a wind turbine.Results show that the mode mixing situation can be improved significantly and the shaft unbalance characteristics can be extracted successfully via the method,which therefore may serve as a reference for fault diagnosis of wind turbines.
出处 《动力工程学报》 CAS CSCD 北大核心 2014年第12期952-958,共7页 Journal of Chinese Society of Power Engineering
基金 中央高校基本科研业务费专项资金资助项目(13MS102)
关键词 局部均值分解 模态混叠 自适应高频谐波 风电机组 故障诊断 LMD mode mixing adaptive high-frequency harmonics wind turbine fault diagnosis
  • 相关文献

同被引文献80

  • 1苗刚,马孝江,任全民.基于J散度的模式分类方法在故障诊断中的应用[J].中国机械工程,2007,18(4):431-433. 被引量:4
  • 2高强,杜小山,范虹,孟庆丰.滚动轴承故障的EMD诊断方法研究[J].振动工程学报,2007,20(1):15-18. 被引量:94
  • 3http://www, wwindea, org/wwea - publishes - half - year - report - 2013 -2/.
  • 4Rai V K, Mohanty A R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert - Huang transform [ J ]. Mechanical Sys- tems and Signal Processing, 2007,21 : 2607 - 2615.
  • 5Zhipeng Feng, Ming J. Zuo, Jian Qu, et al. Joint amplitude and fre- quency demodulation analysis based on local mean decomposition for fault diagnosis of planetary gearboxes [ J ]. Mechanical Systems and Signal Processing,2013,40:56 - 75.
  • 6Yang Y, Cheng J S, Zhang K. An ensemble local means decomposition method and its application to local rub - impact fault diagnosis of the rotor systems [ J ]. Measurement,2012,45:561 - 570.
  • 7Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise assisted data analysis method [ J]. Advances in Adaptive Data Analysis ,2009,1 ( 1 ) : 1 - 41.
  • 8Rilling G, Flandrin P. On the Influence of Sampling on the Empirical Mode Decomposition[ C ]. Proceedings of IEEE Conference on Acous- tics, Speech and Signal Processing, Toulouse, France ,2006 : III - 444 - 450.
  • 9Dragomiretskiy K, Zosso D. Variational mode decomposition [ J ]. IEEE Tran on Signal Processing,2014,62 ( 3 ) :531 - 544.
  • 10唐贵基,向玲,朱永利.基于HHT的旋转机械油膜涡动和油膜振荡故障特征分析[J].中国电机工程学报,2008,28(2):77-81. 被引量:32

引证文献11

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部