摘要
介绍了带有进口导流叶片的三级跨音轴流压气机的气动设计与数值优化过程,气动设计采用准三维体系,包括一维平均流线设计、S2流面通流设计和任意中弧线叶片造型设计,并利用商用软件Numeca进行压气机流场分析.采用遗传算法结合人工神经网络的全局优化方法对第一级跨音动叶在多级环境下进行三维数值优化.结果表明:与优化前相比,优化后跨音级动叶叶尖的激波-边界层干涉损失明显降低,第一级动叶与三级压气机整机近设计点的绝热效率分别提高了0.87%和0.37%,压气机整机的质量流量、总压比、绝热效率和失速裕度均能够满足设计目标.
Aerodynamic design and numerical optimization of a three-stage transonic axial flow compressor with inlet guide vane were described,which adopts the quasi-3Ddesign system,including the one-dimensional mean streamline design,S2 stream surface through flow design and the blade shaping,etc.,while the flow field was analyzed using Numeca software.To improve the adiabatic efficiency of compressor,the first stage transonic rotor blade was optimized under multistage conditions,using aglobal optimization method in combination of Genetic Algorithm(GA)with Artificial Neural Network(ANN).Results show that after numerical optimization,the adiabatic efficiency of both the transonic rotor blade and the threestage compressor has been respectively increased by 0.87%and 0.37%at design point,with significant reduction of shock-boundary layer interaction loss at blade tip.The mass flow,total pressure ratio,adiabatic efficiency and stall margin could all satisfy the design targets.
出处
《动力工程学报》
CAS
CSCD
北大核心
2015年第5期373-379,共7页
Journal of Chinese Society of Power Engineering
基金
上海市科学技术委员会资助项目(12DJ1400700)
关键词
轴流压气机
跨音
气动设计
优化
axial flow compressor
transonic
aerodynamic design
optimization