摘要
为了准确建立锅炉飞灰含碳量预测模型,首先提出了基于量子比特的Bloch球面坐标编码和迭代混沌映射的改进涡流搜索(I-VS)算法,然后对I-VS算法、涡流搜索(VS)算法、粒子群优化(PSO)算法、正余弦(SCA)算法和樽海鞘群(SSA)算法的性能进行比较。基于某热电厂300 MW循环流化床锅炉现场运行数据,采用I-VS算法优化并行感知机的极端学习机(PELM),得到飞灰含碳量的综合预测模型(即I-VS-PELM模型)。最后将I-VS-PELM模型的预测结果与PELM、PSO-PELM、SCA-PELM、SSA-PELM和VS-PELM模型的预测结果进行比较。结果表明:与其他模型相比,I-VS-PELM模型具有更高的预测精度和更好的泛化性能,能更准确地预测锅炉飞灰含碳量。
To accurately predict the carbon content in boiler fly ash,an improved vortex search(I-VS)algorithm was proposed based on Bloch coordinates and iterative chaos mapping,following which,a performance comparison was conducted among the original vortex search(VS)algorithm,I-VS algorithm,particle swarm optimization(PSO)algorithm,sine cosine algorithm(SCA)and salp swarm algorithm(SSA).Based on the operation data of a 300 MW circulating fluidized bed boiler,the I-VS algorithm was used to optimize the extreme learning machine with parallel layer perception(PELM)to form the I-VS-PELM model for prediction of carbon content in fly ash.The prediction results of I-VS-PELM were then compared with those of PELM,PSO-PELM,SCA-PELM,SSA-PELM and VS-PELM.Results show that,compared with other models,the I-VS-PELM model has not only higher prediction precision,but also better generalization ability,which could then be used to effectively predict the carbon content in boiler fly ash.
作者
李霞
牛培峰
刘建平
李国强
LI Xia;NIU Peifeng;LIU Jianping;LI Guoqiang(School of Electrical Engineering,Yanshan University,Qinhuangdao 066004,Hebei Province,China;College of Mathematics and Information Technology,Hebei Normal University of Science and Technology,Qinhuangdao 066004,Hebei Province,China)
出处
《动力工程学报》
CAS
CSCD
北大核心
2019年第7期531-540,共10页
Journal of Chinese Society of Power Engineering
基金
国家自然科学基金资助项目(61573306)
河北省教育厅高等学校科技计划青年拔尖人才资助项目(BJ2017033)
2018年度秦皇岛市社会科学发展研究课题资助项目(201807047)
河北科技师范学院教学研究资助项目(2018HY021)
关键词
飞灰含碳量
并行感知机的极端学习机
Bloch球面坐标
迭代混沌映射
I-VS算法
carbon content in fly ash
extreme learning machine with parallel layer perception(PELM)
Bloch sphere coordinates
iterative chaos mapping
I-VS algorithm