期刊文献+

Effects of Wind Fences on the Wind Environment around Jang Bogo Antarctic Research Station

Effects of Wind Fences on the Wind Environment around Jang Bogo Antarctic Research Station
下载PDF
导出
摘要 This study investigated the flow characteristics altered by Jang Bogo Antarctic Research Station using computational fluid dynamics(CFD) modeling. The topography and buildings around Jang Bogo Station were constructed with computeraided-design data in the CFD model domain. We simulated 16 cases with different inflow directions, and compared the flow characteristics with and without Jang Bogo Station for each inflow direction. The wind data recorded by the site’s automatic weather station(AWS) were used for comparison. Wind rose analysis showed that the wind speed and direction after the construction of Jang Bogo Station were quite different from those before construction. We also investigated how virtual wind fences would modify the flow patterns, changing the distance of the fence from the station as well as the porosity of the fence. For westerly inflows, when the AWS was downwind of Jang Bogo Station, the decrease in wind speed was maximized(-81% for west-northwesterly). The wind speed reduction was also greater as the distance of the fence was closer to Jang Bogo Station. With the same distance, the fence with medium porosity(25%–33%) maximized the wind speed reduction.These results suggest that the location and material of the wind fence should be selected carefully, or AWS data should be interpreted cautiously, for particular prevailing wind directions. This study investigated the flow characteristics altered by Jang Bogo Antarctic Research Station using computational fluid dynamics(CFD) modeling. The topography and buildings around Jang Bogo Station were constructed with computeraided-design data in the CFD model domain. We simulated 16 cases with different inflow directions, and compared the flow characteristics with and without Jang Bogo Station for each inflow direction. The wind data recorded by the site's automatic weather station(AWS) were used for comparison. Wind rose analysis showed that the wind speed and direction after the construction of Jang Bogo Station were quite different from those before construction. We also investigated how virtual wind fences would modify the flow patterns, changing the distance of the fence from the station as well as the porosity of the fence. For westerly inflows, when the AWS was downwind of Jang Bogo Station, the decrease in wind speed was maximized(-81% for west-northwesterly). The wind speed reduction was also greater as the distance of the fence was closer to Jang Bogo Station. With the same distance, the fence with medium porosity(25%–33%) maximized the wind speed reduction.These results suggest that the location and material of the wind fence should be selected carefully, or AWS data should be interpreted cautiously, for particular prevailing wind directions.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第12期1404-1414,共11页 大气科学进展(英文版)
基金 funded by a Korea Polar Research Institute project (PE16250) Hateak KWON is financially supported by PE17010 of Korea Polar Research Institute
关键词 Jang Bogo Antarctic Research Station CFD model observation environment wind fence porosity Jang Bogo Antarctic Research Station CFD model observation environment wind fence porosity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部