期刊文献+

直接挖掘跨层关联规则的新方法 被引量:8

Directly Mining Cross Level Association Rules
下载PDF
导出
摘要 文章定义了一种跨层扩展频繁项目图Clefig,提出了基于Clefig直接产生频繁模式算法Clefig-Prod。它能高效地挖掘单层、多层特别是跨层关联规则。实验表明,在多层、跨层和支持率阀值较小的单层挖掘上,Clefig-Prod效率优于Cumulate、Apriori等经典算法。 In this paper,a new association rule production algorithm based on cross level extended frequent item graph,Clefig-Prod,is proposed.Clefig-Prod can directly mine single,multiple and cross level association rules.Compara-tive experiments with Apriori and Cumulate show that Clefig-Prod is very efficient and highly scalable.
机构地区 杭州商学院
出处 《计算机工程与应用》 CSCD 北大核心 2002年第20期50-51,111,共3页 Computer Engineering and Applications
基金 浙江省自然科学基金资助 浙江省教育厅科技计划的资助
关键词 数据挖掘 跨层关联规则 单层挖掘 数据库 Data mining,Cross level association rules,Sigle mining
  • 相关文献

参考文献9

  • 1[1]R Agrawal,R Srikant. Fast algorithms for mining association rules[C]. In: VLDB'94, Santiago, Chile, 1994: 487~499
  • 2[2]R Agrawal,T Imielinski,A Swami. Mining association rules between sets of items in large databases[C].In:SIGMOD'93,Washington,D C, 1993
  • 3[3]J Han,Y Fu. Discovery of multiple-level association rules from large databases[C].In: VLDB95, Zuich, Switzerland, 1995: 420~431
  • 4[4]R Srikant,R Agrawal. Mining generalized association rules[C].In :VL-DB'95, Zurich, Switzerland, 1995: 407~419
  • 5[5]J Han,J Pei,Y Yin. Mining frequent patterns without candidate gen eration[C].In: SIGMOD'2000, Dallas, TX, 2000
  • 6[6]R Agrawal,C Aggarwal,V V V Prasad. A tree projection algorithm for generation of frequent itemsets[J].In:Journal of Parallel and Distributed Compttting(Special Issue on High Performance Data Mining) ,2000
  • 7[7]R Srikant,R Agrawal. Mining quantitative association rules in largerelational tables[C].In:SIGMOD'96,Montreal ,Canada, 1996:1~12
  • 8[8]R J Bayardo. Efficiently mining long patterns from databases[C].In: SIGMOD'98, Seattle, Washington, 1998: 85~93
  • 9[9]N Pasquier,Y Bastide,R Taouil et al.Discovering frequent closed itemsets for association rules[C].In:ICDT'99,Jerusalem,Israel,1999: 398~416

同被引文献62

  • 1刘乃丽,李玉忱,马磊.一种有效且无冗余的快速关联规则挖掘算法[J].计算机应用,2005,25(6):1396-1397. 被引量:7
  • 2邹志文,朱金伟.数据挖掘算法研究与综述[J].计算机工程与设计,2005,26(9):2304-2307. 被引量:52
  • 3余小鹏.一种基于多层关联规则的推荐算法研究[J].计算机应用,2007,27(6):1392-1393. 被引量:7
  • 4刘君强.[D].浙江大学计算机科学与技术学院,2003.
  • 5刘君强.[D].浙江大学计算机科学与技术学院,2003.
  • 6[1]R.Agrawal,T.Imielinski,A.Swami.Mining association rules between sets of items in large database[A].In:P.Buneman,S.Jajodia,eds.Proc.of 1993 ACM SIGMOD Conf.on Management of Data[C].Washington DC:ACM Press,1993.207-216.
  • 7Junqiang Liu,Yunhe Pan,Ke Wang et al.Mining frequent item sets by opportunistic projection[C].In:Preceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, USA :ACM Press,2002:229-238.
  • 8Jiawei Han,Yong-ian Fu et al.DBMiner:A System for Mining Knowledge in Large Relational Databases[C].In:Proceedings of the 2nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, USA : ACM Press, 1996 : 250-255.
  • 9Jiawei Han,Micheline Kamber.Data Mining:Concepts and Techniques[M].USA :Morgan Kaufmann Publishers,2000.
  • 10Junqiang Liu, Yunhe Pan, Ke Wang, and Jiawei Han. Mining frequent item sets by opportunistic projection[A]. Proceedings of the 8th ACM SIGKDD International Conference onKnowledge Discovery and Data Mining[C]. USA: ACM Press, 2002: 229-238.

引证文献8

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部