期刊文献+

基于贝叶斯分类器的图像检索相关反馈算法 被引量:21

An Image Retrieval Relevance Feedback Algorithm Based on the Bayesian Classifier
下载PDF
导出
摘要 由于图像底层特征及其本身所包含的上层语义信息的巨大差距,使得基于内容的图像检索很难取得令人满意的效果.作为一种有效的解决方案,在过去的几年中,相关反馈在该研究领域取得了一定的成功.提出了一种新的具有学习能力的反馈算法.该算法基于贝叶斯分类原理,运用不同的反馈策略分别处理正、负反馈,同时它具有学习能力,可以运用用户的反馈信息不断地修正检索参数,使系统的检索能力得到不断的提高.通过在大图片库上的检索实验,该算法产生的效果大大优于当前其他的反馈方法. The biggest problem in content-based image retrieval (CBIR) is a big gap between high-level semantic contents and low-level features. As an effective solution, relevance feedback has been put on many efforts for the past few years. In this paper, a new relevance feedback approach with progressive learning capability is proposed. It is based on a Bayesian classifier and treats positive and negative feedback examples with different strategies. It can utilize previous users?feedback information to improve its retrieval ability. The experimental results show that this algorithm achieves high accuracy and effectiveness on real-world image collections.
出处 《软件学报》 EI CSCD 北大核心 2002年第10期2001-2006,共6页 Journal of Software
基金 国家自然科学基金资助项目(69823001) 国家重点基础研究发展规划973资助项目(G1998030509)~
关键词 贝叶斯分类器 图像检索 反馈算法 计算机视觉 人工智能 图像数据库 content-based image retrieval relevance feedback Bayesian classifier
  • 相关文献

参考文献9

  • 1Aalbersberg, I.J. Incremental relevance feedback. In: Belkin, N.J., ed. Pr oceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information retrieval. Copenhagen: ACM Press, 1992. 11~22.
  • 2Harman, D. Relevance feedback revisited. In: Belkin, N.J., ed. Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Developme nt in Information Retrieval. Copenhagen: ACM Press, 1992. 1~10.
  • 3Cox, I.J., Minka, T.P., Papathomas, T.V., et al. The Bayesian image retrie val system, PicHunter: theory, implementation, and psychophysical experiments. I EEE Transactions on Image Processing, 2000,9(1):20~37.
  • 4Rui, Y., Huang, T.S. Relevance feedback: a power tool for interactive cont ent-based image retrieval. IEEE Circuits and Systems for Video Technology, 1999, 8(5):644~655.
  • 5Vasconcelos, N., Lippman, A. Learning from user feedback in image retrieva l systems. In: Proceedings of the NIPS'99. 1999. http://www.media.mit.edu/people /nuno/publications.html.
  • 6Su, Z., Zhang, H., Ma, S. Relevant feedback using a Bayesian classifier in content-based image retrieval. In: Yeung, M.M., et al, eds. Proceedings of the SPIE Storage and Retrieval for Media Databases, Vol 4315. San Jose: SPIE Press, 2001. 97~106.
  • 7Su, Z., Zhang, H., Ma, S. Using Bayesian classifier in relevant feedback o f image retrieval. In: Titsworth, M., ed. Proceedings of the 12th IEEE Internati onal Conference on Tools with Artificial Intelligence (IEEE ICTAI 2000). Vancouv er: IEEE CS Press, 2000. 258~261.
  • 8Rui, Y., Huang, T.S. A novel relevance feedback technique in image retriev al. In: Buford, J., ed. Proceedings of the 7th ACM International Conference (par t 2) on Multimedia (Part 2). New York, NY: ACM Press, 1999. 67~70.
  • 9Duda, R.O., Hart, P.E. Pattern Classification and Scene Analysis. New York : John Wiley & Sons, 1973.

同被引文献175

引证文献21

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部