期刊文献+

一种鲁棒性较强的新神经元模型及其在模糊推理中的应用 被引量:3

A NEW ROBUST NEURON MODEL AND IT′S APPLICATION IN FUZZY INFERENCE
下载PDF
导出
摘要 提出一种具有较强鲁棒性的神经元模型 ,能实现与、或和混合 -并模糊逻辑运算。利用该神经元模型 ,构造了一个神经网络 ,基于该网络的模糊推理方法远比Zadeh的CRI方法更易于满足模糊推理的一致性要求 ,可望在面向医学和人文社会科学等领域的模糊专家系统及模糊决策支持系统中获得应用。 A new fuzzy neuron model proposed in the paper is robust, and can realize fuzzy logic operations of AND, OR and MIXED UNION. Consisting of the new neurons, a fuzzy neural network is constructed here. Based on the neural network, the new method of fuzzy inference is much easier to satisfy consistency principle of fuzzy inference than Zadeh′s CRI. It is likely that the new model is applicable to fuzzy expert systems and fuzzy decision support systems in medicine and literal humanity fields.
出处 《计算机应用》 CSCD 北大核心 2002年第10期38-40,共3页 journal of Computer Applications
基金 国家自然科学基金项目 (60 0 72 0 34)
关键词 鲁棒性 神经元模型 模糊推理 神经网络 fuzzy neuron robustness fuzzy inference CRI
  • 相关文献

参考文献3

二级参考文献23

共引文献357

同被引文献12

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部