期刊文献+

采用小波技术的几种电能质量扰动的测量与分类方法 被引量:136

WAVELET-BASED MEASUREMENTS AND CLASSIFICATION OF SHORT DURATION POWER QUALITY DISTURBANCES
下载PDF
导出
摘要 提出了一种新的短时电能质量扰动(SDPQD)的测量与分类方法:SDPQD的位置与范围用差变信号实时确定;幅度用小波变换(WT)方法确定;WT用新设计的复小波,采用塔式二进快速算法即可达到移动不变效果;分类用的特征量为极容易在时域与WT域提取的新定义的二进数,用简单的二-十进制转换方法即可得到毫无歧义的正确的分类结果。对5种SDPQD的仿真结果表明,该方法快速,正确,扩展到分析更多的SDPQD时极为方便。 This paper introduces a wavelet-based method for measuring and classifying short duration power quality disturbances (SDPQDs). A difference signal is formed for detection and localization in real-time. Wavelet transform (WT) with a new complex wavelet is utilized to quantify SDPQDs. It can take the fast dyadic scheme not the time consuming shift-invariant scheme and just need the detail version at one scale not at many scales. Novel binary features are defined and extracted from time or WT domain, and then a simple binary-decimal conversion is sufficient for classification purpose. This benefits the method both fast and accurate. Simulation results for five types of SDPQDs show that the proposed method is much better than others.
作者 陈祥训
出处 《中国电机工程学报》 EI CSCD 北大核心 2002年第10期1-6,共6页 Proceedings of the CSEE
基金 国家自然科学基金资助项目(50077021)。~
关键词 小波技术 电能质量扰动 测量 分类 电力系统 塔式二进快速算法 信号分析 power quality Lifting scheme shift-invariant wavelet transform binary features binary-decimal conversion classification
  • 相关文献

参考文献18

  • 1[1]Angrisani L, Daponte P, Apuzzo M D. A measument method based on the wavelet transform for power quality analysis[J]. IEEE Trans Power Delivery, 1998, 13(4):990-998.
  • 2[2]Huang S J, et al. Application of morlet wavelets to supervise power system disturbances[J]. IEEE Trans Power Delivery, 1999, 14(1):235-243.
  • 3[3]Gaouda A M,et al. Power quality detection and classification using wavelet-multiresolution signal decomposition[J].IEEE Trans. Power Delivery, 1998, 14(4):1469-1476.
  • 4[4]Application of multiresolution signal decomposition for monitoring short-duration variations in distribution systems[J]. IEEE Trans Power Delivery, 2000, 15(2):478-485.
  • 5[5]Santoso S, Powers E J, et al. Power quality disturbance waveform recognition using wavelet-based neural classifier?Part 1: theoretical foundation, Part 2: application[J]. IEEE Trans Power Delivery, 2000, 15(1):222-235.
  • 6[6]Poisson O, Rioual P, Meunier M. Detection and measurement of power quality disturbances using wavelet transform[J].IEEE Trans Power Delivery, 2000, 15(3):1039-1044.
  • 7[7]Karimi M, Mokhtari H, Iravani R. Wavelet based on-Line disturbance detection for power quality applications[J]. IEEE Trans Power Delivery, 2000, 15(4):1212-1220.
  • 8[8]Vetterli M, Herley C, Wavelets and filter banks: theory and design[J]. IEEE Trans Signal Process, 1992, 40(9):2207-2232.
  • 9[9]Sweldens W. The Liftinging scheme: a custom-design construction of biorthogonal wavelets[J]. J. Appl. and Comput. Harmonic Analysis, 1996, 3(2):186-200.
  • 10[10]Daubechies I. Ten lectures on wavelets[M]. CBMS-NSF Regional Conf. series in Appl. Math., Philadelphia, PA, 1992, 61:277.

同被引文献1113

引证文献136

二级引证文献1484

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部