期刊文献+

OMI特征提取算法及关于风险偏好的决策规则的研究 被引量:1

Research on OMI Feature Scoring and Statistical Decision Rule with Regard to Investor's Risk Preference
下载PDF
导出
摘要 受到金融风暴的影响,投资者们的态度逐渐变得审慎,这使得金融机构迫切希望自己的投资产品能适销对路。通常情况下,风险与收益是成正比的,但是并不是每个人都能承受高风险,所以要抓住投资者的心理,向其推销适合的投资产品,需要先知道投资者的风险偏好。要做到这一点,必须在收集投资者的有关信息的基础上对投资者人群按风险偏好进行合理划分。本研究来自一份对投资者的调查问卷,设计OMI算法解决因子评分问题,使得属性因子的评分与风险偏好正相关;在此基础上用Kruskal-Wallis检验求出对风险偏好有显著影响的特征组合,从而产生最终的决策规则。 Because of the financial turmoil,investors have become increasingly cautious,which makes financial institutions eager to sell their financial products to the right customers.Under normal circumstances,profits is directly proportional to the risks,but not everyone can stand highrisk,so to identify the right customers,we need to know the risk preferences of investors.To do this,investors must be divided into different types according to their risk preference reflected by a collection of relevant information of investors.Based on an investor questionnaire,makes use of the OMI algorithm to solve the problem of feature scoring,making the score positively correlated with the risk preference;after that,Kruskal-Wallis test is used to find the feature combinations that significantly impact the investor's risk preference,resulting in the ultimate decision rules.
作者 朱敏铭 张磊
机构地区 中山大学统计系
出处 《现代计算机》 2010年第5X期5-9,22,共6页 Modern Computer
关键词 风险偏好 OMI算法 因子评分 Kruskal-Wallis检验 决策规则 Investor's Risk Preferences OMI Algorithm Feature Scoring Kruskal-Wallis Test Decision Rule
  • 相关文献

参考文献4

二级参考文献47

  • 1张焱,欧阳一鸣,王浩,汪曦东.数据挖掘在金融领域中的应用研究[J].计算机工程与应用,2004,40(18):208-211. 被引量:19
  • 2唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 3Yang Yiming,Pedersen J O.A comparative study on feature selection in text categorization[C]//Proc of the 14th International Conference on Machine Learning ICML97,1997:412-420.
  • 4Karypis G,Han E.Fast supervised dimensionality reduction algorithm with applications to document categorization and retrieval[C]// Proc of the 9th ACM International Conference on Information and Knowledge Management CIKM-00.New York,US:ACM Press,2000: 228-233.
  • 5Baker L D,McCallum A K.Distributional clustering of words for text classification[C]//Proc of the 21st Annual International ACM SIGIR, 1998 :96-103.
  • 6谭松波语料库[DB/OL].http://lcc.software.ict.ac.cn/-tansongbo/corpusl.php.
  • 7Jolliffe I T.Principal component analysis[M].New York:Spriger Verlag, 1986.
  • 8Martinez A M,Kak A C.PCA versus LDA[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(2):228-233.
  • 9LIU Huan, SETIONO R. A probabilistic approach to feature selection: a filter solution [ C ]//Proc of the 13th International Conf Machine Learning. 1996:319-327.
  • 10HALL M A. Correlation-based feature selection for discrete and numeric class machine learning [ C ]//Proc of the 17th International Conf Machine Learning. 2000:359-366.

共引文献52

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部