摘要
为引导清洁能源与电网的协调发展,研究了以确保风电场合理投建为规划目标的风电场–储能–输电网联合规划方法,具体包括建立了涵盖规划决策、运行评估的两阶段规划模型,计及了设备投资、储能运行、风电配额制、风电保障消纳等约束;应用信息间隙决策理论(informationgap decision theory,IGDT)来处理负荷增长的长期不确定性,应用机会约束优化来控制规划方案应对风电短期不确定性的适应性;在求解算法上,设计了基于Benders分解的变种算法以及相应的收敛准则和强化策略。算例结果表明,采用所提规划模型可配合风电建设来优化配置输电网和风电侧储能,有效实现风电场的合理投建以及风电的足额消纳,所提求解算法可大幅提高计算效率。
To guide coordinated development of clean energy and power grid,this paper proposes a novel methodology for joint planning of wind farm,energy storage and transmission to ensure sound wind farm investment.Specifically,a two-stage planning model covering planning decision-making and operation evaluation is established,considering constraints concerning equipment investment,energy storage operation,wind power quotas and guaranteed wind power utilization.Information gap decision theory is applied to manage the long-term uncertainties of load growth while chance constraints are formulated to control adaptability of planning schemes to the short-term uncertainties of wind power.To solve the planning problems efficiently,this paper also designs a suitable variant of Benders decomposition algorithm and corresponding convergence criteria and enhancement strategy.Numerical results show that the proposed model can be used in conjunction with construction of wind power to optimize transmission and wind-farm-side energy storage,effectively realizing sound wind farm investment and sufficient wind power utilization.The proposed solution algorithm can also drastically enhance computational efficiency.
作者
李昀昊
王建学
曹晓宇
周保荣
卢斯煜
LI Yunhao;WANG Jianxue;CAO Xiaoyu;ZHOU Baorong;LU Siyu(School of Electrical Engineering,Xi’an Jiaotong University,Xi’an710049,Shaanxi Province,China;Electric Power Research Institute,China Southern Power Grid Co.,Ltd.,Guangzhou510080,Guangdong Province,China)
出处
《电网技术》
EI
CSCD
北大核心
2019年第10期3715-3724,共10页
Power System Technology
基金
南方电网公司重点科技项目(CSGTRC-K163007)
陕西省重点研发计划重点产业创新链项目(2017ZDCXL-GY-02-03)~~
关键词
风电
储能
协调规划
信息间隙决策理论
分解算法
wind power
energy storage
coordinated planning
information gap decision theory
decomposition algorithm