摘要
利用锥理论和非对称迭代方法,研究了半序实Banach空间中一类随机算子方程A(ω,x(ω),x(ω))+u0=B(ω,x(ω))的随机不动点的存在唯一性,给出了迭代序列收敛于解的误差估计,把某些反向混合单调算子的不动点定理进行了随机化.
By using the cone theory and non-symmetric iteration method, this paper analyszes the exisitence and uniqueness of random fixed point of random operator equations A ( ω , x ( ω ), x ( ω )) + u0= B ( ω , x( ω)) in the semi-order real Banach space. The iteration sequences which converge to solution and the error estimates are also given, and some random versions of fixed point theorems for anti-mixed monotone operator are derived.
出处
《西南民族大学学报(自然科学版)》
CAS
2009年第3期400-403,共4页
Journal of Southwest Minzu University(Natural Science Edition)
基金
河南省自然科学基金资助项目(072300410370)
关键词
非对称迭代
随机反向混合单调算子
随机不动点
锥与半序
non-symmetric iteration
random anti-mixed monotone operator
random fixed point
cone and partial ordering