期刊文献+

基于对称迭代法的二元算子方程解的存在性研究

The existence study based on the solution of binary operator equation of the symmetric iteration method
下载PDF
导出
摘要 运用锥与半序理论和对称迭代方法,讨论了一类不具有反向混合单调性的二元算子方程解的存在惟一性,且给出了迭代序列收敛于解的误差估计.并把所得结论应用于二元算子方程组,所得结果改进和推广了反向混合单调算子方程某些已知的相应结果. Using the cone and partial theory and symmetry iteration method, this paper studies the existence and uniqueness of solutions of a class of binary operator equation without anti-mixed monotone condition, and the iteration sequences which converge to solution of operator equations and the error estimates are also given. The conclusion applies to the binary operator equations. The results presented here improve and generalize some corresponding results for anti-mixed monotone operators.
作者 徐华伟
出处 《西南民族大学学报(自然科学版)》 CAS 2009年第3期404-406,共3页 Journal of Southwest Minzu University(Natural Science Edition)
基金 河南省自然科学基金资助项目(072300410370)
关键词 锥与半序 反向混合单调算子 非对称迭代 不动点 cone and partial ordering anti-mixed monotone operator symmetric iteration fixed point
  • 相关文献

参考文献6

二级参考文献17

  • 1孙义静.一类非混合单调算子方程的耦合解定理及其非单调迭代算法[J].高校应用数学学报(A辑),1998,13(4):400-406. 被引量:1
  • 2郭大均 孙经先 等.非线性常微分方程泛函方法[M].济南:山东科技出版社,1995..
  • 3Zhang Shisheng, Guo Weiping. On the existence and uniqueness theorems of solutions for the systems of mixed monotone operator equations with applications, [J]. Appliet. A Journal of Chinese Universties(SerB), 1993,8:11 - 14.
  • 4Guo Dajun, Lakshmikantham v. Coupled fixed points of nonlinear operators with application[ J ]. Nonlinear Anal, 1987, ( 11 ) :623 - 632.
  • 5郭大钧,科学通报,1979年,24卷,15期,678页
  • 6郭大钧,科学通报,1978年,23卷,1期,27页
  • 7郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,1995..
  • 8Guo Da-jun,Lakshmikantham V.Coupled fixed points of nonlinear operators with applications[J].Nonlinear Anal TMA,1987,11(5):623-632.
  • 9Guo Da-jun.Fixed point of mixed monotone operators with applications[J].Anal Appl,1988,31(2):215-224.
  • 10Guo Dajun, Lakshmikantham V. Coupled fixed points of nonlinear operators with applications[J]. Nonlinear Anal TMA,1987,11(5): 623-632.

共引文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部