摘要
入侵检测系统是任何一个完整的网络安全系统中必不可缺的部分。日益严峻的安全问题对于检测方法提出更高的要求。传统的入侵检测方法存在误报漏报及实时性差等缺点,将机器学习的技术引人到入侵监测系统之中以有效地提高系统性能具有十分重要的现实意义。支持向量机(SVM)是一种建立在统计学习理论(SLT)基础之上的机器学习方法。被成功地应用到入侵检测领域中。本文讨论了模糊支持向量机优化算法及其在入侵检测中的应用。实验表明,基于模糊支持向量机检测入侵的方法能较大地提高入侵检测系统的性能。
出处
《信息与电脑(理论版)》
2010年第9期16-16,共1页
China Computer & Communication