1B. Moghaddam, A. Pentlan. Beyond linear eigenspaces: Bayesian matching for face recognition. In: Face Recognition: From Theory to Application. New York: Springer-Verlag 1998. 230~243.
2H. A. Rowley. Neural network-based human face detection:[Ph. D. dissertation]. Pittsburgh, USA: Carnegie Mellon University, 1999.
3R. Feraud, O.J. Bernier, Jean-Emmanuel Viallet, et al. A Fast and accurate face detector based on neural networks. IEEE Trans.Pattern Analysis and Machine Intelligence, 2001, 23(1): 42~53.
4H. Schneiderman, T. Kanade. A statistical method for 3D object detection applied to faces and cars. IEEE Conf. Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina,2000.
5E. Osuna, R. Freund, F. Girosi. Training support vector machines: An application to face detection. IEEE Conf. Computer Vision and Pattern Recognition, Puerto Rico, 1997.
6V.P. Kumar, T. Poggio. Learning-based approach to real time tracking and analysis of faces. http: ∥ cbcl. mit. edu/cbcl/publications/ai- publications, 1999.
7P. Viola, M. Jones. Rapid object detection using a boosted cascade of simple features. IEEE Conf. Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, 2001.
8Y. Freund, R. E. Schapire. Experiments with a new boosting algorithm. In: Proc. the 13th Conf. Machine Learning. San Francisco: Morgan Kaufmann, 1996. 148~156.
9R.E. Schapire, Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 1999, 37 (3) .297~336.
10Y. Li, S. Gong, H. Liddell. Support vector regression and classification based multi-view face detection and recognition.IEEE Conf. Automatic Face and Gesture Recognition, Grenoble,France, 2000.