期刊文献+

基于SVM的中文产品评论情感分类研究 被引量:1

原文传递
导出
摘要 随着电子商务的飞速发展,网络上的产品评论数量也随着飞速增长。如何从大量的产品评论中挖掘出有效信息,已经成为一个重要的研究领域。情感分类将产品评论自动分为正面评论和负面评论两类,是一项有较大实用价值的分类技术,能帮助人们自动分析产品评论中包含的用户观点信息。本文针对中文产品评论的多种特征,使用SVM作为分类方法,比较分析了不同特征对分类效果的影响。实验结果表明,选择适当的特征,使用SVM可以获得较好的情感分类效果。
作者 郗亚辉
出处 《信息与电脑(理论版)》 2012年第1期139-140,共2页 China Computer & Communication
  • 相关文献

参考文献1

二级参考文献17

  • 1Franco Salvetti, Stephen Lewis, Christoph Reichenbach. Automatic Opinion Polarity Classification of Movie Reviews[J]. Colorado Research in Linguistics, 2004, Volume 17, Issue 1.
  • 2Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In: Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 79 86.
  • 3Aidan Finn, Nicholas Kushmerick, and Barry Smyth. Genre classification and domain transfer for information filtering[A]. In: Fabio Crestani, Mark Girolami, and Cornelis J. van Rijsbergen, editors, Proceedings of ECIR-02, 24th European Colloquium on Information Retrieval Research, Glasgow, UK. Springer Verlag, Heidelberg, DE.
  • 4Janyce Wiebe, Rebecca Bruce, Matthew Bell, Melanie Martin, and Theresa Wilson. A corpus study of evaluative and speculative language[A]. In: Proceedings of the 2nd ACL SIGdial Workshop on Discourse and Dialogue, 2001.
  • 5Alina Andreevskaia and Sabine Bergler. Mining Word-Net For a Fuzzy Sentiment: Sentiment Tag Extraction From WordNet Glosses[A].In: Proc. EACL-06, Trento, Italy, 2006.
  • 6Alistair Kennedy and Diana Inkpen. Sentiment Classification of Movie Reviews Using Contextual Valence Shifters[J]. Computational Intelligence, 2006,22 (2) 110-125.
  • 7P.D. Turney and M.L. Littman. Unsupervised learning of semantic orientation from a hundred-billion-word corpus[D]. Technical Report ERB-1094, National Research Council Canada, Institute for Information Technology, 2002.
  • 8P. Subasic and A. Huettner. Affect analysis of text using fuzzy semantic typing[A]. IEEE-FS, 9:483 496, Aug. 2001.
  • 9Hugo Liu, Henry Lieberman, and Ted Selker. A model of textual affect sensing using real-world knowl- edge[A]. In: Proceedings of the Seventh International Conference on Intelligent User Interfaces [C].2003. 125-132.
  • 10Wei-Hao Lin, Theresa Wilson, Janyce Wiebe and Alexander Hauptmann. Which Side are You on? Identifying Perspectives at the Document and Sentence Levels[A]. In: Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLLX)[C]. New York City: June 2006, 109-116,

共引文献135

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部