期刊文献+

基于多处理器构造安全椭圆曲线的并行化设计与实现

原文传递
导出
摘要 安全椭圆曲线是椭圆曲线密码体制理论研究与实际应用的前提和根本,本文通过分析GF(p)上构造安全椭圆曲线的算法与一种奇素数域构造给定长度的素数阶的椭圆曲线算法,将两种算法适合并行化的部分进行并行化处理,并设计了基于多处理器的构造安全椭圆曲线的并行化模型,进而实现加快构造安全椭圆曲线的速度。
作者 黄剑华
出处 《信息与电脑(理论版)》 2012年第5期37-38,共2页 China Computer & Communication
  • 相关文献

参考文献4

二级参考文献17

  • 1[2]V.Miller,Uses of elliptic curves in cryptography,Advances in Cryptology-CRYPTO' 85.LNCS218,Santa Barbara,Calif.,Springer-Verlag,1986,417-426.
  • 2[3]Multiprecision Integer and Rational Arithmetic C/C++ Library(MIRCAL),available at http://indigo.ie/~msoott/.
  • 3[4]A.Menezes,T.Okamnoto,S.Vanstone,Reducing elliptic curve logarithms to logarithms in a finitoe field.IEEE Trans.on Information Theory,1993,39(5),1639-1646.
  • 4[5]N.Koblitz,A Course in Number Theory and Cryptogralphy,2nd e7ition.Spring-Verlag.1994.Ch.6.
  • 5[6]N.Koblitz,Algebraic Aspects of Cryptography,Algorithms and Computation in Math.Editors:E.Becker,M.Bronstein,H.Cohen,3(1998),Berlin Heidelberg,Springer-Verlag,1998,Ch.6.
  • 6[7]IEEE P1363,Standard Specifications for Public-Key Cryptography,Ballot Draft.1999,Drafts available at http://indigo,ie/~msoott/.
  • 7[8]R.Schoof,Elliptic curves over finite fields and the computation of square roots modp.Math.Comp.,1985,44(170),483-494.
  • 8[9].T.Izu,J.kogure,M.Noro,K.Yokoyama,Efficient Implementation of Sehoof's Algorithm.Asi acrypt'98,Berlin Heidelberg,Springer-Verlag,1998,66-79.
  • 9[10]Lehmann,Maurer,Mueller,Shoup ,Counting the number of points on elliptic curves over finite fields of characteristic greater than three,Proc.1st Algorithmic Number Theory Symposinn (ANTS),Berlin Heidelberg,Springer-Verlag,1994,LNCS877,60-70.
  • 10[1]N.Koblitz,Elliptic curve cryptosystems,Mathematics of Computation,1987,45(177),203-209.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部