期刊文献+

基于信度网络推理的风电监控数据缺失值恢复算法 被引量:11

Wind Power Monitoring Data Missing Value Recovery Algorithm Based on Belief Network
下载PDF
导出
摘要 构建各级各类电力数据仓库是支撑电力系统数据平台建设的基础,针对电力调度数据仓库的风电监测数据的缺失问题,文章提出一种基于信度网络推理的风电监控数据缺失值恢复算法。首先根据数据集属性相关性构建信度网络,然后基于信度网络进行概率推理,最终找出最大概率下的候选值来对缺失记录进行恢复。通过使用MapReduce技术对某风电监控数据进行缺失值恢复实验,验证了算法的有效性。 Building various kinds of power data warehouses at different levels is the foundation of supporting the construction of power data platform.Aiming at the problem of wind power monitoring data missing in power dispatching data warehouse,this paper presents a method of filling missing wind power monitoring data based on belief network reasoning.Firstly,a belief network is constructed according to the relevance of attributes of data sets.Then,probabilistic reasoning is carried out based on the belief network.Finally,candidate values with the maximum probability are found to recover missing records.By using MapReduce technology to fill the missing values of wind power monitoring data,the validity of the method is verified.
作者 刘福盛 张兰 卢学佳 李屹煊 高茜 魏宝林 LIU Fusheng;ZHANG Lan;LU Xuejia;LI Yixuan;GAO Qian;WEI Baolin(Information and Telecommunication Branch,State Grid Hengshui Power Supply Company,Hengshui 053000,China)
出处 《电力信息与通信技术》 2019年第4期48-55,共8页 Electric Power Information and Communication Technology
关键词 电力数据仓库 数据恢复 信度网络 MAPREDUCE power dispatching data warehouse data recovery belief network MapReduce
  • 相关文献

参考文献16

二级参考文献156

  • 1朱彩虹,黄珊珊,高建森,李宗礼,李玲玲.SVG自适应无功检测方法及控制系统的研究[J].电工技术学报,2013,28(S2):309-314. 被引量:17
  • 2李序颖.基于空间自回归模型的缺失值插补方法[J].数理统计与管理,2005,24(3):45-50. 被引量:9
  • 3TROYANSKAYA O,CANTOR M,SHERLOCK G,et al.Missing value estimation methods for DNA microarrays[J]. Bioinformatics,2001,17:520-525.
  • 4SHIGEYUKI OBA, MASA-AKI SATO,ICHIRO TAKEMASA,et al.A Bayesian missing value estimation method for gene expression profile data[J]. Bioinformatics,2003,19(16) .
  • 5KIMY H,GOLUBZ GH,PARKY H.Missing Value Estimation for DNA Microarray Gene Expression Data: Local Least Squares Imputation[J]. Bioinformatics,2004.
  • 6KI-YEOL KIM, BYOUNG-JIN KIM,GWAN-SU YI.Reuse of imputed data in microarray analysis increases imputation efficiency[J].BMC Bioinformatics 2004,5:160.
  • 7贾俊平.统计学[M].北京:中国人民大学出版社,2002..
  • 8SPELLMAN PT,SHERLOCK G,ZHANG MQ,et al.Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization[J].Mol Biol Cell,1998,9(12):3273-3297.
  • 9DERISI JL,IYER VR,BROWN PO.Exploring the metabolic and genetic control of gene xpression on a genomic scale[J]. Science,1997,278,680-686.
  • 10GASCH AP,SPELLMAN PT,KAO CM,et al.Genomic expression programs in the response of yeast cells to environmental changes[J]. Mol Biol Cell,2000,11(12):4241-4257.

共引文献244

同被引文献178

引证文献11

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部