期刊文献+

正则带的半格结构 被引量:4

Semilattice Structure of Regular Bands
下载PDF
导出
摘要 Petrich解决了一般带的构造定理(见[1]或[2]),在此基础上,我们将证明正则带(满足等式axga=axaya的带)的一些特征,并给出一个带为正则带或右拟正规带(满足等式xya=xaya的带)的充分必要条件.这些结果是Yamada和Kimura的关于正规带(满足等式axya=ayxa的带)的结果的推广,正规带被他们描述为矩形带的强半格(见[1]或[3]). Petrich gave a construction theorem of a general band ([1] or [2]). On this base, we will show some characterizations of regular bands (bands satisfy the identity axya = axaya) and give sufficient and necessary conditions for a band to be a regular band and for a band to be a right quasinormal band (bands satisfy the identity yxa = yaxa ), they are all generalizations of Yamada and Kimura's result for normal bands (bands satisfy the identity axya = ayxa) , they described normal bands as strong semilattices of rectangular bands.
出处 《数学进展》 CSCD 北大核心 2002年第5期476-482,共7页 Advances in Mathematics(China)
基金 山东省自然科学基金青年基金资助.
关键词 半格结构 正则带 同余 同态 半群 regular bands congruences homomorphisms
  • 相关文献

参考文献6

  • 1[1]Howie J M. An Introduction to Semigroup Theory. London: Academic Press, 1976.
  • 2[2]Petrich M and Reilly N R. Completely Regular Semigroups. New York: John Wiley & Sons, Inc, 1999.
  • 3[3]Yamada M and Kimura N. Note on idempotent semigroups, II. Proc. Japan. Acad, 1958, 34: 110-112.
  • 4[4]Petrich M. Lectures in Semigroups. Berlin: Academic Verlag, 1977.
  • 5[5]Zhang Liang, Shum Karping and Zhang Ronghua. On refined semilattices, to appear in Algebra Colloquium.
  • 6[6]Kong Xiangzhi and Shum Karping. On the structure of regular crypto semigroups. Communications in Algebra, 2001, 29(6): 2461-2479.

同被引文献30

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部