摘要
Petrich解决了一般带的构造定理(见[1]或[2]),在此基础上,我们将证明正则带(满足等式axga=axaya的带)的一些特征,并给出一个带为正则带或右拟正规带(满足等式xya=xaya的带)的充分必要条件.这些结果是Yamada和Kimura的关于正规带(满足等式axya=ayxa的带)的结果的推广,正规带被他们描述为矩形带的强半格(见[1]或[3]).
Petrich gave a construction theorem of a general band ([1] or [2]). On this base, we will show some characterizations of regular bands (bands satisfy the identity axya = axaya) and give sufficient and necessary conditions for a band to be a regular band and for a band to be a right quasinormal band (bands satisfy the identity yxa = yaxa ), they are all generalizations of Yamada and Kimura's result for normal bands (bands satisfy the identity axya = ayxa) , they described normal bands as strong semilattices of rectangular bands.
出处
《数学进展》
CSCD
北大核心
2002年第5期476-482,共7页
Advances in Mathematics(China)
基金
山东省自然科学基金青年基金资助.