期刊文献+

初等算子的正规性(英文) 被引量:1

Normality of Elementary Operators
下载PDF
导出
摘要   设初等算子E(X)=∑AiXBi,定义E*(X)=∑Ai*XBi*.我们证明了EE*=E*E当且仅当{Ai}和{Bi}都是交换的正规算子族,从而回答了由D.Keckic提出的关于初等算子正规性的开问题.我们还给出了E=E*的充分必要条件. Given an elementary operator E(X) = AiXBi, we define E* (X) = Ai*XBi*. Inthis note, we prove that EE* = E*E if and only if {Ai} and {Bi} are commuting families of normal perators, which answers the question on normality of elementary operators proposed by D. Keckic. We also give a necessary and sufficient condition that assures that E =E*.
作者 陆芳言
机构地区 苏州大学数学系
出处 《应用泛函分析学报》 CSCD 2002年第2期118-123,共6页 Acta Analysis Functionalis Applicata
关键词 初等算子 正规性 正规算子 elementary operator normality normal operator
  • 相关文献

参考文献7

  • 1AndersonJ.On normalderivation[J].Proc Amer Math Soc,1973,38:135-140.
  • 2Keckic D. Orthogonality of the range and the kernel of some elementaryoperators[J]. Proc Amer Math Soc, 2000,128:3368-3377.
  • 3Kittaneh F. Normal derivations in norm ideals[J]. Proc Amer Math Soc,1995,123:1779-1785.
  • 4Halmos P R. A Hilbert Space Problem Book[M], Second ed. Springer-Verlag, New York,1982.
  • 5Lu S, Lu F. Normality preserving Multiplication operators[J]. Acta Math Sinica, NewSeries, 1995,11(4) :389-398.
  • 6Conway J B. A Course in Functional Analysis, Second ed[M]. Springer-Verlag, NewYork, 1990.
  • 7FongCK SourorAR.On the operator indentity ∑AkXBk = 0 [J].Canad J Math,1979,31:845-857.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部