期刊文献+

基于自适应CKF的姿态数据融合算法 被引量:8

Attitude data fusion algorithm based on adaptive CKF
下载PDF
导出
摘要 为了提高基于MEMS惯性传感器的捷联惯性导航系统姿态解算的精度,提出了一种自适应容积卡尔曼滤波(CKF)数据融合算法。该数据融合算法将姿态四元数作为系统状态,将加速度计信息和磁力计信息作为系统观测量,对系统过程噪声矩阵和观测噪声矩阵进行实时的自适应估计,解决了因系统噪声突变引起的姿态解算精度急剧下降的问题。实验结果表明,采用自适应CKF数据融合算法比单纯基于陀螺仪的捷联姿态解算精度有明显的提高,在载体动态时测得的横滚角和俯仰角误差在1°以内,航向角误差在2°以内。 In order to improve the precision of attitude calculation of strapdown inertial navigation system based on MEMS inertial sensor, an adaptive cubature Kalman filter(CKF) data fusion algorithm is proposed. The data fusion algorithm takes the attitude quaternion as the system state, uses the accelerometer information and the magnetometer information as the system observation, and performs real-time adaptive estimation on the system process noise matrix and the observed noise matrix to solve the problem of rapid descent of attitude calculation accuracy caused by the sudden change of system noise. The experimental results show that the adaptive CKF data fusion algorithm is significantly better on calculation accuracy than the gyroscope-based strapdown attitude calculation. The roll and pitch angle errors measured in the carrier dynamics are within 1° and the heading angle error is within 2°.
作者 王鑫 张丽杰 Wang Xin;Zhang Lijie(College of Electric Power,Inner Mongolia University of Technology,Hohhot 010051,China)
出处 《电子测量技术》 2019年第3期11-15,共5页 Electronic Measurement Technology
基金 国家自然科学基金地区项目(61663034) 内蒙古重大基础研究开放课题项目(机电控制重点实验室)资助
关键词 四元数 捷联姿态解算 系统噪声 自适应容积卡尔曼滤波 quaternion attitude calculation of strapdown system noise adaptive cubature Kalman filter
  • 相关文献

参考文献10

二级参考文献119

共引文献215

同被引文献87

引证文献8

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部