期刊文献+

一种基于声纹识别的智能门锁系统设计与实现 被引量:9

Design and implementation of a smart door lock system based on voiceprint recognition
下载PDF
导出
摘要 针对目前市面上已有的指纹锁、人脸锁等,尚且缺乏一款成熟的语音锁,设计并实现了一种利用不同说话人声音之间的差异,而识别开锁人身份的智能语音门锁系统。系统以智能手机为客户端平台,采集用户的语音,上传至云服务器,利用声纹识别技术识别用户身份,当用户通过身份认证,系统再通过无线网络通信的方式,将开锁信号发送到以NodeMCU为硬件平台的门锁端,从而实现开锁操作。此外,系统采用Web网页的形式展示服务端后台,可以实现管理员对系统的远程管理和监控。实验结果表明,该门锁系统的具有90%左右的识别准确率,同时错误接受率较低,充分证明了系统的安全性和稳定性。 As the existing fingerprint locks and face locks on the market, there is still a lack of a mature voice lock, and a smart voice lock system that uses the difference between different speaker voices to identify the unlocked person is designed and implemented. The system uses the smart phone as the client platform, collects the user’s voice, uploads it to the cloud server, and uses the voiceprint recognition technology to identify the user identity. When the user passes the identity authentication, the system sends the unlock signal to the NodeMCU which is the door lock end of the hardware platform through wireless network communication, thereby realizing the unlocking operation. In addition, the system uses the web page to display the server background, which enables the administrator to remotely manage and monitor the system. The experimental results show that the door lock system has a recognition accuracy of about 90%, and the error acceptance rate is very low, which fully proves the safety and stability of the system.
作者 王涛 王国中 朱林林 Wang Tao;Wang Guozhong;Zhu Linlin(Shanghai Film Special Effects Engineering Technology Research Center,Shanghai Film Academy,Shanghai University,Shanghai 200072,China;School of Communication&Information Engineering,Shanghai University,Shanghai 200444,China)
出处 《电子测量技术》 2019年第3期107-111,共5页 Electronic Measurement Technology
关键词 智能门锁 声纹识别 智能手机 NodeMCU 网络通信 smart door lock voiceprint recognition smart phone NodeMCU network communication
  • 相关文献

参考文献9

二级参考文献65

  • 1童英华,陈学煌,冯忠岭.心音和脉搏信号采集系统的设计[J].微型电脑应用,2011(2):63-64. 被引量:1
  • 2吴尊敬,曹志刚.Improved MFCC-Based Feature for Robust Speaker Identification[J].Tsinghua Science and Technology,2005,10(2):158-161. 被引量:7
  • 3林奕琳,韦岗,杨康才.语音情感识别的研究进展[J].电路与系统学报,2007,12(1):90-98. 被引量:33
  • 4李思一,戴蓓蒨,王海祥.基于子带GMM-UBM的广播语音多语种识别[J].数据采集与处理,2007,22(1):14-18. 被引量:2
  • 5Reynolds D A,Rose R C.Robust text-independent speaker identification using Gaussian mixture speaker models[J].IEEE Transactions on Speech and Audio Processing,1995,3(1):72-83.
  • 6Reynolds D A.Speaker identification and verification using Gaussian mixture speaker model[J].Speech Communication,1995,17:91-108.
  • 7You K H.Wang H C.Joint estimation of feature transformation parameters and Gaussian mixture model for speaker identification[J].Speech Communication,1999,28:227-241.
  • 8Jim Z C.Improvement of the K-means clustering filtering algorithm[J].Pattern Recognition,2008,41 (12):3677-3681.
  • 9Reynolds D A,Thomas F.Speaker verification using adapted Gaus-sian mixture models[J].Digital Signal Processing,2000,10 (1-3):19-41.
  • 10Wooters C, Ftmg J, Peskin B, et al.Towards robust speaker seg- mentation: The ICSI-SRI fall 2004 diarization system[C]//Proc of Fall 2004 Rich Transcription Workshop,New York,Palisades, 2004:315-320.

共引文献111

同被引文献102

引证文献9

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部