期刊文献+

基于灰狼优化算法的SVM的图像噪声识别 被引量:12

Approach for image noise recognition by optimizing SVM using grey wolf optimization algorithm
下载PDF
导出
摘要 对噪声图像进行噪声类型识别,是对噪声图像进行有针对性去噪的关键技术之一。支持向量机(SVM)是一种基于统计学习理论适用于有限样本情况的分类方法,而且它的分类能力很大程度上取决其相关参数。提出一种基于灰狼优化算法(GWO)的SVM分类方法,将GWO应用在SVM的参数寻优中,从而获得最优的分类模型;同时将该方法应用于噪声图像的噪声类型识别实验,针对高斯、椒盐、斑点这3类噪声在目标图像上形成的噪声干扰图像,分别用90个和60个干扰图像数据作为训练集和测试集,提取Zernike矩、小波高频不显著系数子带能量比这两类特征值,利用GWA-SVM分类器对干扰图像特征进行分类。实验结果表明,与传统的SVM分类器相比,GWA-SVM方法具有更好的分类准确率。 Noise type recognition for noise images is one of the key techniques for targeted denoising of noise images.Support vector machine(SVM)is a classification method based on statistical learning theory applicable to finite sample cases,and its classification ability depends largely on its related parameters.In this paper anew method is proposed to optimize the parameters of SVM.Grey wolf optimization(GWO)algorithm is used to optimize the parameter of SVM for obtain the optimal classification model,meanwhile the proposed method is applied to the noise type recognition experiment of noise images.The images withnoise interference are formed by three types of noises such as Gauss noise,Salt-and-Peppernoise and speckle noise.90sample data are taken as training samples and the remaining 60sample data are taken as the testing samples.The Zernike moments and wavelet high-frequency non-significant coefficient subband energy ratio are selected as the eigenvalue.The GWO-SVM classifier is used to classify noise images.The experimental results show that the GWO-SVM method has better classification accuracy than the traditional SVM classifier.
作者 田东雨 何玉珠 宋平 Tian Dongyu;He Yuzhu;Song Ping(School of Instrumentation Science and Opto-electronics,Beihang University,Beijing 100191,China)
出处 《电子测量技术》 2019年第4期90-94,共5页 Electronic Measurement Technology
关键词 噪声干扰图像 噪声识别 支持向量机 灰狼优化算法 参数优化 image with noise interference noise recognition support vector machine grey wolf optimization algorithm parameter optimization
  • 相关文献

参考文献11

二级参考文献117

共引文献214

同被引文献139

引证文献12

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部