期刊文献+

经验模态分解法识别声带息肉和声带囊肿的研究 被引量:1

Empirical Mode Decomposition in the Research of Vocal Polyp and Vocal Cyst
下载PDF
导出
摘要 为了提高声带类病理语音识别率,本文提出了一种采用经验模态分解法(Empiricial Mode Decomposition,EMD)识别声带息肉和声带囊肿的研究方法。首先采用经验模态分解法对正常语音和声带息肉类、声带囊肿类病理语音进行分解,求取语音信号的固有模态函数(IMF),经过希尔伯特-黄变换(Hibletr-Huang)变化之后,提取边际谱和特征参数用于声带类病理语音的细分。实验研究表明,采用支持向量积(SVM)边际谱和参数识别声带息肉、声带囊肿、正常语音,识别率高达90.96%。 A method based on empirical mode decomposition is proposed to improve vocal cord disease recognition rate.First,using the empirical mode decomposition method(EMD)decomposes normal voice and pathological voice of vocal cords polyp and vocal cord cyst to calculate intrinsic mode functions(IMF)of the speech signal.After Hilbert-Huang transform,we can extract the sum of the marginal spectrum feature parameters,used for segmentation of vocal class of pathological voice.The experimental results show that using support vector product(SVM)identification of the sum of the marginal spectrum parameters of three classification,including vocal cords polyp,vocal cord cyst,of normal speech recognition,the recognition rate is 90.96%.
出处 《信息化研究》 2015年第2期27-32,共6页 INFORMATIZATION RESEARCH
基金 国家自然科学基金(No.61271359)
关键词 声带息肉 声带囊肿 经验模态分解 希尔伯特-黄变换 边际谱和 vocal cords polyp vocal cyst empirical mode decomposition Hilbert-huang transform the sum of marginal spectrum
  • 相关文献

参考文献10

  • 1盖广洪.经验模态分解的一种改进算法[J].西安交通大学学报,2004,38(11):1199-1202. 被引量:22
  • 2钟佑明,秦树人,汤宝平.希尔伯特黄变换中边际谱的研究[J].系统工程与电子技术,2004,26(9):1323-1326. 被引量:69
  • 3Antoine Giovanni,Maurice Ouaknine,Jean-Michel Triglia.Determination of largest lyapunov exponents of vocal signal: Application to unilateral laryngeal paralysis[J]. Journal of Voice . 1999 (3)
  • 4Huang Norden E.,Shen Zheng,Long Steven R.,Wu Manli C.,Shih Hsing H.,Zheng Quanan,Yen Nai-Chyuan,Tung Chi Chao,Liu Henry H..The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences . 1998 (1971)
  • 5Parsa V,Jamieson D G.Identification of pathological voices using glottal noise measures. Journal of speech, language, and hearing research : JSLHR . 2000
  • 6Battista, Bradley Matthew,Knapp, Camelia,McGee, Tom,Goebel, Vaughn.Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data. Geophysics . 2007
  • 7M.F. Erden,M.A. Kutay,H.M. Ozaktas.Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration. IEEE Transactions on Signal Processing . 1999
  • 8Gavidia-Ceballos L,Hansen J H L,Kaiser J F.Vocal fold pathology assessment using AM autocorrelation analysis of the Teager energy operator. IEEE:Fourth international conference spoken language proceedings,1996 . 1996
  • 9Behroozmand R,Almasganj F,Moradi M H.Pathological assessment of vocal fold nodules and polyp using acoustics perturbation and phase space features. IEEE:Acoustics,speech and signal processing,2006.ICASSP2006proceedings . 2006
  • 10Eye M,Infirmary E.Voice disorders database,version.1.03. . 1994

二级参考文献13

  • 1Qin S, Chen DP. Joint Time-Frequency Analysis[J]. IEEE Signal Processing Magazine, 1999, 16(2): 52-67.
  • 2boashash B. Estimating and Interpreting the Instantaneous Frequency of a Signal--Part 1:Fundamentals[J]. Proc. IEEE, 1992, 80(4): 520-538.
  • 3Champency C D. A Handbook of Fourier Theorems[M]. London: Cambridge University Press, 1987.
  • 4Huang N E. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J]. J. Proc.R. Soc. Lond. A, 1998, 454: 903-995.
  • 5Cohen L. Time Frequency Analysis[M]. New York: Prentice-Hall, 1995.
  • 6Schlurmann T. Spectral Analysis of Nonlinear Water Waves Based on the Hilbert-Huang Transformation[J]. Journal of Offshore Mechanics and Arctic Engineering- Transactions of the ASME, 2002, 124(1): 22-27.
  • 7Veltcheva A D. Wave and Group Transformation by a Hilbert Spectrum [J]. Coastal Engineering Journal, 2002, 44(4): 283 - 300.
  • 8Pinzon J E. Using HHT to Successfully Uncouple Seasonal and Interannual Components in Remotely Sensed Data[A]. Proc 6th World Multiconference on Systemics, Cybernetics and Informatics, 2002. 287- 292.
  • 9Zhong Y M, Qin S R. HHT and a New Noise Removal Method[A].Proc 2nd International Symposium on Instrumentation Science and Technology, 2002. 553 - 557.
  • 10Loh C H. Application of the Empirical Mode Decomposition-Hilbert Spectrum Method to Identify Near-Fault Ground-Motion Characteristics and Structural Responses[J]. Bulletin of the Seismological Society of America, 2001, 91(5): 1339 - 1357.

共引文献103

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部