期刊文献+

基于虚拟融合的夜视图像增强与眩光抑制方法 被引量:6

Image enhancement and glare suppression based on virtual fusion at night vision
下载PDF
导出
摘要 夜视系统已经成为驾驶辅助系统的重要组成部分,但夜间采集的图像在大面积低照度和对面来车强光干扰下表现出明显的光照不均匀性。提出了一种基于多尺度tophat变换和虚拟融合的图像增强和眩光抑制方法,首先采用多尺度tophat估计光照曲面,获得目标图像;进而将目标图像叠加不同的虚拟光照获得多幅光照补偿的多幅图像,根据对比度和曝光品质的指标进行多分辨率融合。实验表明该方法实现了眩光抑制和暗区增强,有效解决了夜视图像光照不均匀性问题,使得处理后图像最远可以辨识200 m处的目标。 Night vision system is become more useful in advanced driver assistance system.Night vision images have the imbalanced illumination at large area low light and the glare from opposite car.This paper presents image enhancement and glare suppression method based on multiscale top hat transform and virtual fusion.Firstly,the method estimate illumination surfaces and get the target image using multiscale top hat transform.Then,it makes different compensation images through superposition between the target image and the different virtual illumination.Multi resolution images fusion is made by the contrast and exposure quality measures.Experiments show that the dark area of image is enhanced and the glare is suppressed.The problem of imbalanced illumination is solved effectively in night vision.The enhancement image can recognize farthest the target at 200 meters.
出处 《电子测量与仪器学报》 CSCD 2014年第4期368-372,共5页 Journal of Electronic Measurement and Instrumentation
基金 国家博士后基金面上项目资助(2013M531504)
关键词 图像增强 眩光抑制 tophat变换 虚拟融合 image enhancement glare suppression tophat transformation virtual fusion
  • 相关文献

参考文献5

二级参考文献53

共引文献74

同被引文献80

  • 1于宁波,刘嘉男,高丽,孙泽文,韩建达.基于深度学习的膝关节MR图像自动分割方法[J].仪器仪表学报,2020(6):140-149. 被引量:30
  • 2刘盛鹏,方勇.基于Contourlet变换和IPCNN的融合算法及其在可见光与红外线图像融合中的应用[J].红外与毫米波学报,2007,26(3):217-221. 被引量:34
  • 3SHWARTZ S, NAMER E, SCHECHNER Y Y. Blind haze separation[ C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006 (2) : 1984-1991.
  • 4NAYAR S K, NARASIMHAN S G. Vision in bad weath- er[ C]. Proceedings of the IEEE International Conference on Computer Vision, 1999(2) : 820-827.
  • 5SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Instant dehazing of images using polarization [ C ]. Pro- ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001 ( 1 ) :325-323.
  • 6NARASIMHAN S G, NAYAR S K. Contrast restoration of weather degraded images [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (6) : 713-724.
  • 7SCHECHNER Y Y, AVERBUCH Y. Regularized image recovery in scattering media [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (9) : 1655-1660.
  • 8HE K, SUN J, TANG X. Single image haze removal using dark channel prior[ J~. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2011, 33 (12) : 2341-2353.
  • 9LAND E H, MCCANN J. Lightness and retinex theory [ J ]. Journal of Optical Society of America, 1971, 61(1) : 1-11.
  • 10JOBSON D J, RAHMAN Z U, WOODELL G A. Proper- ties and performance of a center/surround retinex [ J ]. IEEE Transactions on Image Processing, 1997, 6 ( 3 ) : 451-462.

引证文献6

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部