期刊文献+

基于SIFT和NMF-SVD的NSCT域抗几何攻击水印算法 被引量:6

NSCT-domain image watermarking scheme robust to geometric attacks based on SIFT and NMF-SVD
下载PDF
导出
摘要 为了进一步提高水印算法的鲁棒性,提出了一种在无下采样Contourlet变换(non-subsampled contourlet transform,NSCT)域中利用尺度不变特征变换(scale-invariant feature transform,SIFT)特征点进行几何攻击校正,并结合非负矩阵分解(non-negative matrix factorization,NMF)和奇异值分解(singular value decomposition,SVD)的图像抗几何攻击水印算法。该算法首先对RGB宿主图像进行两层NSCT并分别提取低频部分的红色分量和蓝色分量;然后充分利用非负矩阵的线性无关性和稀疏性以及奇异矩阵的稳定性,对蓝色低频分量进行水印的嵌入;最后利用红色低频分量的SIFT特征点信息对宿主图像进行几何攻击校正,恢复水印的同步信息后再提取水印。大量的实验结果表明,该算法在保证不可感知性的前提下,对于常规图像处理具有更好的鲁棒性能,并能有效地抵抗各类几何攻击和组合攻击。 In order to further improve the robustness of watermarking scheme,an image watermarking scheme robust to geometric attacks in non-subsampled contourlet transform( NSCT) domain is proposed,in which scale-invariant feature transform( SIFT) key-points are used to correct the geometric attacks,and non-negative matrix factorization( NMF) is combined with singular value decomposition( SVD). Firstly,two-level NSCT of RGB host image is performed. The red component and blue component of the low-frequency part are extracted,respectively.Then the linear independence and sparsity of the non-negative matrix after NMF,and the stability of the singular matrix after SVD are made full use of. The watermarking is embedded into the blue low-frequency component. Finally,the SIFT key-points of the red low-frequency component are used to correct the geometric attacks for host image,the watermarking synchronization information is recovered and the watermarking is extracted. A large number of experimental results show that,on the premise of invisibility,the proposed algorithm is more robust against the common image processing,while it can effectively resist the geometric attacks and the combination attacks.
出处 《电子测量与仪器学报》 CSCD 北大核心 2015年第7期961-969,共9页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(60872065) 江苏省社会安全图像与视频理解重点实验室(南京理工大学)开放基金(JSKL201302) 江苏高校优势学科建设工程资助项目
关键词 数字水印 无下采样Contourlet变换 非负矩阵分解 奇异值分解 尺度不变特征变换 digital watermarking non-subsampled contourlet transform non-negative matrix factorization singular value decomposition scale-invariant feature transform
  • 相关文献

参考文献8

  • 1Cheng Deng,Xinbo Gao,Xuelong Li,Dacheng Tao.A local Tchebichef moments-based robust image watermarking[J]. Signal Processing . 2009 (8)
  • 2Silja MS,Soman K P.A watermarking algorithm based on contourlet transform and nonnegative matrix factorization. 2009International Conference on Advances in Recent Technologies in Communication and Computing . 2009
  • 3Mohammad Ali Akhaee,S. Mohammad Ebrahim Sahraeian,Farokh Marvasti.Contourlet-based image watermarking using optimum detector in a noisy environment. IEEE Transactions on Image Processing . 2010
  • 4Cox IJ,Miller ML,Bloom JA.Digital Watermarking. . 2002
  • 5Zhang Li,Qian Gong-Bin,Xiao Wei-Wei,Ji Zhen.Geometric invariant blind image watermarking by invariant Tchebichef moments. Optics Express . 2007
  • 6Ruizhen Liu,Tieniu Tan.An SVD-based watermarking scheme for protecting rightful ownership. IEEE Transactions on Multimedia . 2002
  • 7Lee, Hae-Yeoun,Kim, Hyungshin,Lee, Heung-Kyu.Robust image watermarking using local invariant features. Optical Engineering . 2006
  • 8SUN W,LU W.Blind image watermark analysis using DWT and non-negative matrix factorization. Chinese Conference on Pattern Recognition,2008.CCPR’’08 . 2008

同被引文献30

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部