期刊文献+

基于阈值修正的自适应新生目标状态提取

Adaptive newborn target state extraction based on threshold correction
下载PDF
导出
摘要 传统的多目标跟踪算法采取在量测附近进行粒子采样来近似表示新生目标,虽然这种方法有一定的可操作性,但在量测似然较大时,该量测更有可能来自存活目标。对此,采用自适应新生目标粒子PHD滤波方法,这种方法将存活目标和新生目标作为两个不同的部分分别进行滤波。同时,由于聚类K均值算法进行PHD状态提取时对初始粒子的选取有很强的依赖性,并且容易受到噪声的干扰,影响状态提取的结果,为了解决这个问题,在自适应新生目标强度PHD滤波的基础之上,设置阈值筛选权值较大的粒子进行归一化处理,这种方法大大简化了目标状态提取的过程,进一步提高了滤波的精度。 Traditional multiple target tracking algorithm usually carries out particle sampling near the measurement to estimate the newborn target approximately,although this method has some maneuverability,it has large chance comes from survival target when the measurement likelihood is high. The adaptive newborn target particle PHD filter is adopted in this paper,which treats survival targets and newborn targets as two different filtering parts. Because the K-means clustering algorithm has very strong dependence to the initial particle selection and susceptible to noise,the extraction results is affected. In order to solve this problem,based on the adaptive newborn target PHD filter,this paper sets the threshold to select particles with larger weight. This method could greatly simplify the process of target state extraction,further improve the filtering accuracy.
出处 《电子测量与仪器学报》 CSCD 北大核心 2018年第6期161-166,共6页 Journal of Electronic Measurement and Instrumentation
基金 2018年度河南省重点研发与推广专项(182102310944)资助
关键词 粒子PHD滤波 新生目标 阈值修正 状态提取 particle PHD filter newborn target threshold correction state extraction
  • 相关文献

参考文献8

二级参考文献134

  • 1李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374. 被引量:88
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3贾静平,张艳宁,柴艳妹,赵荣椿.目标多自由度Mean Shift序列图像跟踪算法[J].西北工业大学学报,2005,23(5):618-622. 被引量:8
  • 4牛琨,张舒博,陈俊亮.融合网格密度的聚类中心初始化方案[J].北京邮电大学学报,2007,30(2):6-10. 被引量:16
  • 5FiEDLER M. Algebraic connectivity of graphs[J]. Czechoslovak Mathematical Journal, 1973, 23(98) :298-305.
  • 6LUXBURG von U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4) :395-416.
  • 7NG A, JORDAN M, WEISS Y. On spectral clustering: analysis and an algorithm[ C ]//Advances in Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press, 2002.
  • 8SHI J, MALIK J. Normalized cuts and image segmentation[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905.
  • 9KANNAN R, VEMPALA S, VETFA A. On clusterings-good, bad, and spectral[C]//Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science. [ S. l. ]: IEEE Press, 2000.
  • 10HUANG L, YAN D, JORDAN M. Spectral clustering with perturbed data[ C]// Advances in Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press, 2008: 705- 712.

共引文献428

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部