摘要
提出了一种基于卷积神经网络(CNN)的实时鲁棒的行人检测算法。随着CNN在图像识别的广泛成功,CNN也被引用到行人检测领域,但这些方法还难以达到实时应用。在充分利用CNN强大特征表征能力的同时,提出了一种实时的行人检测算法,该算法将行人检测构建为一个回归问题,每张图像只需一次网络前向传播,直接输出行人包围框的位置以及置信度。此外,还提出了一种多尺度特征表示方法,进一步提高了行人检测的性能。最后在通用的Caltech行人检测数据集进行算法测试,实验结果验证了算法的有效性,平均检测速度可以达到50.6 fps,可以满足实时应用的需求。
A real-time and robust pedestrian detection method based on convolutional neural network( CNN) is proposed. Along with the success of CNN in image recognition,CNN has also been used in pedestrian detection,while these methods are far from the real-time requirements. On the assistance of the rich feature representation of CNN,a real-time pedestrian detection method is proposed,which formulates pedestrian detection as a regression problem. Every detection only needs a forward operation,and the location and confidence of pedestrian bounding boxes are output directly. Additionally,a multi-scale feature representation strategy is proposed,which further improves the detection performance. In the end,the method is tested on the Caltech pedestrian detection dataset,and the experimental results demonstrate the effectiveness of the proposed method,the average speed can achieve 50.6FPS,which can meet the real-time requirements.
出处
《电子测量与仪器学报》
CSCD
北大核心
2018年第7期15-20,共6页
Journal of Electronic Measurement and Instrumentation
基金
湖北省教育厅科学研究计划(B201622)资助项目
关键词
机器视觉
行人检测
卷积神经网络
多尺度特征
machine vision
pedestrian detection
Convolutional neural network
multi-scale feature representation