期刊文献+

多集采样和非线性最小二乘估计的频谱感知 被引量:3

Spectrum sensing using multicoset sampling andnonlinear least squares estimation
下载PDF
导出
摘要 针对认知无线电和网络中可用频带的感知,提出了一种基于多集采样和非线性最小二乘估计的宽带频谱感知方法.首先,基于多集采样器,把可用的频带划分为有限数量的频道,得到一种基于采样参数和噪声功率的检测阈值的理论表达式,并计算出采样数据的相关矩阵;然后,采用一个非线性最小二乘估计器来估计被占用的频道和空闲频道,同时,采用顺序前向选择算法来降低估计器实现的复杂性;仿真实验结果表明,相比于传统的基于能量检测和其他常用的频谱感知方法,新方案不仅在采样率方面有可观的节省,而且在相同的信噪比(SNR)下能获得更好的检测概率和虚警概率。 A wideband spectrum sensing method based on multicoset sampling and nonlinear least squares estimation is proposed for the sensing of available frequency bands in cognitive radio and networks. Firstly, basing on the multioset sampler, the available frequency bands is divided into a finite number of spectral bands and a theoretical expression was derived for detection threshold based on the sampling parameters and noise power,and the correlation matrix of the sampled data was calculated. Then, a nonlinear least squares estimator was used to estimate the occupied channels and vacant channels and a sequential forward selection algorithm was used to reduce the complexity of the estimator implementation. The simulation results show that, compared with the traditional spectrum sensing method based on energy detection and other commonly used spectrum sensing method, the novel scheme has considerable savings in terms of sampling rate, better detection probability and false alarm probability under the same signaltonoist ratio(SNR).
作者 宁宏新 Ning Hongxin(Shiyuan College,Guangxi Teacher's University,Nanning 530226,China)
机构地区 广西师范学院
出处 《电子测量与仪器学报》 CSCD 北大核心 2018年第11期58-64,共7页 Journal of Electronic Measurement and Instrumentation
基金 2018年度广西高校中青年教师基础能力提升项目(2018ky0901)资助
关键词 认知无线电 频谱感知 多集采样 相关矩阵 最小二乘估计器 检测概率 虚警概率 cognitive radio spectrum sensing multicoset sampling correlation matrix least squares estimator detection probability false alarm probability
  • 相关文献

参考文献5

二级参考文献75

  • 1Leibovitz J S. The great spectrum debate: A commentary on the fcc spectrum policy task force's report on spectrum rights and responsibilities[J]. Yale J 1 & Tech, 2003, 6(4),391-431.
  • 2Mitola J I, Maguire G Q. Cognitive radio: Making software radios more personal[J]. IEEE Personal Communications, 1999, 6(4):13-18.
  • 3Haykin S. Cognitive radio: Brain-empowered wireless communications[J]. IEEE Journal on Selected Areas in Communica- tions, 2006, 23(2):201-220.
  • 4Asadi H, Volos H, Marefat M M, et al. Metacognition and the next generation of cognitive radio engines[J]. IEEE Commu- nications Magazine, 2016, 54(1):76-82.
  • 5Akyildiz I F, Lee W Y, Vuran M C, et al. Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey[J]. Computer Networks, 2006, 50(13):2127-2159.
  • 6Rothenberg C E, Roos A. A review of policy-based resource and admission control functions in evolving access and next gen- eration networks[J]. Journal of Network & Systems Management, 2008, 16(1) : 14-45.
  • 7Cordeiro C, Challapali K, Birru D, et al. IEEE 802.22, The first worldwide wireless standard based on cognitive radios[C]//2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. Baltimore, Mary- land, USA: IEEE, 2005: 328-337.
  • 8Cordeiro C, Challapali K, Birru D, et al. IEEE 802.22: An introduction to the first wireless standard based on cognitive ra- dios[J]. Journal of Communications, 2006, 1(1): 38-47.
  • 9Ranganathan R, Qiu R, Hu Z, et al. Cognitive radio for smart grid: Theory, algorithms, and security[J]. International Journal of Digital Multimedia Broadcasting, 2011, 2011(10):1-14.
  • 10Yang D, Xu Y, Gidlund M. Wireless coexistence between IEEE 802.11-and IEEE 802.15. 4-based networks: A survey[J]. International Journal of Distributed Sensor Networks, 2011, 2011(3): 876-879.

共引文献37

同被引文献27

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部