期刊文献+

基于多重渐消因子强跟踪非线性滤波的故障参数联合估计 被引量:6

Fault parameter joint estimation based on multiple fading factors strong tracking nonlinear filter
下载PDF
导出
摘要 为改进故障参数估计的精度和鲁棒性,提出基于多重渐消因子强跟踪七阶容积卡尔曼滤波(MST7thCKF)的故障参数联合估计算法。算法将故障参数扩展至状态向量,实现状态和故障参数联合滤波。然后,将多重渐消因子强跟踪滤波(MSTF)引入七阶容积卡尔曼滤波(7thCKF)的框架中,改进7thCKF在故障参数变化函数未知或者发生突变时的鲁棒性,提高故障参数的估计精度。仿真结果表明,相比MSTF均方根容积卡尔曼滤波(MSTSCKF)和7thCKF,所提算法具有更好估计精度。 To improve the estimating precision and robustness of fault parameters,fault parameter joint estimation algorithm based on multiple fading factors strong tracking seventh-degree cubature Kalman filter(MST7thCKF)is proposed.The algorithmextends the fault parameter to state vector,and realizes joint filtering of state and fault parameters.Then,the algorithm introduces multiple fading factors strong tracking filter(MSTF)into the frame of seventh-degree cubature Kalman filter(7thCKF)to improve the robustness of 7thCKF when the fault parameters changing function is unknown or abruptly changed,and enhances estimating precision of fault parameters.Simulation results show that the proposed algorithm has better estimating precision than MSTF square-rootcubature Kalman filter(MSTSCKF)and 7thCKF.
作者 刘树聃 Liu Shudan(Xuchang Gengxin Information Science Research Institute,Xuchang 461000,China;Aviation Engineering Institute,Xuchang Vocational Technical College,Xuchang 461000,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2019年第1期164-170,共7页 Journal of Electronic Measurement and Instrumentation
基金 河南省教改重点项目([2015]061号)资助
关键词 故障参数 联合滤波 强跟踪滤波 7thCKF fault parameter joint filtering strong tracking filter seventh-degree cubature Kalman filter
  • 相关文献

参考文献8

二级参考文献55

  • 1李劲.无源双基地雷达目标运动分析的可观测性[J].电讯技术,2004,44(6):158-162. 被引量:3
  • 2范文兵,刘春风,张素贞.一种强跟踪扩展卡尔曼滤波器的改进算法[J].控制与决策,2006,21(1):73-76. 被引量:28
  • 3杨元喜,高为广.两种渐消滤波与自适应抗差滤波的综合比较分析[J].武汉大学学报(信息科学版),2006,31(11):980-982. 被引量:31
  • 4SONG T L,SPEYER J L. A stochastic analysis of a modified gain extented Kalman filter with applications to estimation with bearings only measurements[J]. IEEE Trans, 1985, AC-30(10): 940~949.
  • 5PACHTER M,CHANDLER P R. Universal linearization concept for extended Kalman filters[J]. IEEE Trans, 1993, AES-29(3): 946~961.
  • 6JULIER S,UHLMANN J,DURRANT-WHYTE H F. A new method for the nonlinear transformation of means and covariances in filters and estimators [J]. IEEE Trans, 2000, AC-45(3): 477~482.
  • 7周东华,控制与决策,1990年,5卷,1页
  • 8Benkouider A M, Buvat J C, Cosmao J M. , et al. Fault detection in semi-batch reactor using the EKF and statistical method[J]. Jourrlal of loss Prevention in the Process Industries, 2009, 22(2) : 153 - 161.
  • 9Benkouider A M, Kessas R, Yahiaoui A, et al. A hybrid approach to faults detection and diagnosis in batch and semi batch reactors by using EKF and neural network elassifier[J]. Journal of Loss Pre- vention in the Process Industries, 2012, 25(4): 694- 702.
  • 10Simon J J, Jeffrey K U. A new extension of the Kalman filter to nonlinear systems[C]//Proc, of the l lth International Sympo slum on Aerospace/ Defense Sensing, Simulation and Controls, 1997: 54-65.

共引文献259

同被引文献69

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部