摘要
实现航空发动机剩余寿命的准确预测对于保证飞行安全和提高维修效率具有重要意义,但现有的预测算法往往只是浅层结构,且对各传感器参数之间的相互关系缺乏关联性考虑,限制了对发动机参数信息的深度挖掘。在深度学习理论的基础上,着重考虑不同传感器之间的参数关系,引入差分时域特征扩充特征集,构建了基于长短时记忆网络的寿命预测模型DTF-LSTM。在C-MAPSS数据集上的实验结果表明,该算法相较于其他深度学习算法具有更低的均方根误差(RMSE)值,可以有效实现发动机剩余寿命预测。
It is of great significance to realize the accurate prediction of the remaining life of aero-engine to ensure flight safety and to improve maintenance efficiency.However,the existing algorithms only have shallow structure,the lack of correlation among the parameters of each sensor is considered,which limits the deep excavation of engine parameter information.Based on this issue,this paper focuses on the parameter relationship between different sensors,and expands the feature set by introducing differential time domain feature on the basis of the theory of deep learning.Therefore,the proposed method called DTF-LSTM constructs the life prediction model based on long short time memory network.Experimental results on the C-MAPSS dataset show that the algorithm has lower RMSE value than other deep learning algorithms,which can effectively realize the prediction of engine residual life.
作者
高峰
曲建岭
袁涛
高峰娟
Gao Feng;Qu Jianling;Yuan Tao;Gao Fengjuan(Qingdao Branch of Naval Aviation University,Qingdao 266041,China)
出处
《电子测量与仪器学报》
CSCD
北大核心
2019年第3期21-28,共8页
Journal of Electronic Measurement and Instrumentation
关键词
航空发动机
寿命预测
深度学习
差分时域特征
长短时记忆网络
aero-engine
life prediction
deep learning
differential time-domain features
long short time memory