摘要
针对模块化多电平换流器(MMC)结构复杂、IGBT开路故障定位困难问题,提出一种基于小波包分解(WPD)与主成分分析(PCA)的数据压缩与降噪算法以及一种基于遗传算法(GA)和BP神经网络的故障定位算法;对比分析IGBT开路故障状态下的3种典型参量,选取子模块电容电压作为故障参量,并采用所提算法进行数据处理;提出双标签编码方式,进行故障定位;采用CPS-SPWM调制策略,构建模块化五电平换流器仿真模型,仿真结果表明,发生故障时,故障子模块节点能量明显高于其他子模块;故障特征相量经PCA降维后的前7个主成分累计贡献率可达99%;提出的WPD-PCA联合GA-BP定位算法与BP、SSAE-SOFTMAX、WPD-PNN、WPD-BP、FFT-PCA-BP 5种算法进行对比,测试准确率可达到100%,且抗噪声性能优良;提出的多标签编码方式减小网络训练难度,提高数据利用率;该算法能对故障桥臂、故障子模块以及IGBT进行精准定位。
Aiming at the complex structure of modular multilevel converter(MMC)and the difficulty open-circuit fault location of IGBT,a data compression and noise reduction algorithm based on wavelet packet decomposition(WPD)and principal component analysis(PCA)and a fault location algorithm based on genetic algorithm(GA)and BP neural network were proposed.Three typical parameters under the open-circuit fault of IGBT were analyzed,and the capacitor voltage of the sub-module was selected as the fault parameter to be used to deal with by the proposed algorithm.Constructed a simulation model of modularized five-level converter by the CPS-SPWM modulation strategy,and the results show that the node energy of the fault sub-module is significantly higher than that of other sub-modules when a open-circuit fault occurs.After PCA dimension reduction,the cumulative contribution rate of the first 7 principal components can reach 99%.Compared WPD-PCA combined GA-BP algorithm with BP,SSAE-SOFTMAX,WPD-PNN,WPD-BP,FFT-PCA-BP and WPD-BP,the result shows that the test accuracy can reach 100%,and the anti-noise performance is excellent.Multi-label coding can reduce the difficulty of network training and improve the utilization of data.The proposed method can accurately locate the fault bridge arm,fault submodule and fault IGBT.
作者
杨桢
马子莹
李鑫
Yang Zhen;Ma Ziying;Li Xin(Faculty of Electrical and Control Engineering,Liaoning Technical University,Huludao 125105,China)
出处
《电子测量与仪器学报》
CSCD
北大核心
2019年第7期181-187,共7页
Journal of Electronic Measurement and Instrumentation
基金
辽宁省教育厅基金(LJYL016)
辽宁省自然科学基金面上项目(20170540427)资助