期刊文献+

提高测量分辨率的改进Dither方法 被引量:3

Measurement resolution enhancement by improved Dither method
下载PDF
导出
摘要 传统的Dither方法(DM)通过随机抖动待测量的值,能够达到提高测量分辨率的目的,但是对分辨率的提升效果有限。为了进一步提升测量分辨率,提出了一种改进的Dither加扰方法(IDM)。IDM是在特定范围内并且按照特定的序列值对待测量进行抖动。通过数学推导,在理论上证明了利用IDM测量N次可将测量分辨率提高N倍。利用MATLAB分别采用DM和IDM对50个随机待测量进行仿真测量,对测量误差的均值和方差进行分析,仿真结果表明,IDM的测量精度与测量的稳定性均优于传统DM,且随着测量次数的增加,IDM的优势越明显。最后搭建了实验平台,对IDM进行实测分析,当实际测量次数为11次时,IDM的测量精度相对于直接测量提高了2.54倍。 Traditional Dither method(DM)can improve the measurement resolution by randomly dithering the quantities to be measured.However,the resolution improvement of DM is limited.To further improve the measurement resolution,an improved dithering method(IDM)is proposed.IDM is dithering the quantities to be measured in a certain sequence and within a given range.This paper provides theoretical mathematical proof that the resolution of IDM increases by N times when the quantities are measured N times.Simulations of 50 random quantities have been conducted in MATLAB by DM and IDM respectively.Mean value and variance analysis of measurement errors is presented,which shows that the measurement accuracy and stability of IDM are better than those of DM.The performance advantage of IDM is much more obvious with the increase of measure times.An experimental platform is built to conduct physical measurement data analysis and results show that the measurement accuracy of IDM is 2.54 times better than that of direct measurement.
作者 曾维棋 马上 黄秋 胡剑浩 Zeng Weiqi;Ma Shang;Huang Qiu;Hu Jianhao(National Key Lab of Science and Technology on Communications,University of Electronic Science and Technology of China,Chengdu 611731,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2019年第8期40-45,共6页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(61571083)资助项目
关键词 DITHER 改进Dither 测量分辨率 测量误差 测量精度 Dither improved Dither measurement resolution measurement error measurement accuracy
  • 相关文献

参考文献4

二级参考文献37

  • 1唐军,谢澍霖,王卫星.航天扩频测控通信系统中伪码测距方法及精度分析[J].电讯技术,2006,46(4):91-95. 被引量:23
  • 2Kevin J. Quirk,Meera Srinivasan. PN Code Tracking Using Noncommensurate Sampling [J]. IEEE Transactions on Communications, 2006,54 ( 10 ) : 1845- 1856.
  • 3LIU G, SUN X, FU K, et al. Aircraft recognition in high-resolution satellite images using coarse-to-fine shape prior[J]. Geoscience and Remote Sensing Let- ters, 2013, 10(3): 573-577.
  • 4FRIEDMAN N, GEIGER D, GOLDSZMIDT M. Bayesian network classifiers[J]. Machine learning, 1997, 29(2-3): 131-163.
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient- based learning applied to document recognition[J]. Pro-ceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 6LAUER F, SUEN C Y, BLOCH G. A trainable fea- ture extractor for handwritten digit recognition[J]. Pattern Recognition, 2007, 40(6) : 1816-1824.
  • 7LAWRENCE S, GILES C L, TSOI A C, et al. Face rec- ognition, A convolutional neural network approach[J]. Neural Networks, IEEE Transactions on, 1997, 8(1) : 98-113.
  • 8CIRESAN D C, MEIER U, MASCI J, et al. Flexi ble, high performance convolutional neural networks for image classification[C]. IJCAI Proceedings-Inter- national Joint Conference on Artificial Intelligence. 2011, 22(1): 1237.
  • 9TANG J, DENG C, HUANG G B, et al. Com- pressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine[J]. IEEE Transactions on Geoseience and Remote Sensing, 2015, 53(3): 1174-1185.
  • 10KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Advances in neural information process- ing systems, 2012: 1097-1105.

共引文献127

同被引文献34

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部