期刊文献+

基于MSE-PCA的脑电睡眠分期方法研究 被引量:5

Research on sleep staging method of EEG based on MSE-PCA
下载PDF
导出
摘要 针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法。以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结果作为样本,首先使用MSE表征受试者脑电信号不同睡眠期的非线性动力学特征;然后使用PCA的前两个主成分向量代替MSE特征进行降维,实现降低数据冗余的同时保留绝大多数EEG非线性特征;最终将新向量的特征参数输入到反馈神经网络(BPNN)分类器中实现MSE-PCA模型的脑电睡眠状态的自动识别分类。实验结果表明,自动分期准确率可达到87.9%,kappa系数0.77,该方法能提高脑电自动睡眠分期系统的准确率和稳定性。 Aiming at the problem of insufficient accuracy of traditional automatic sleep staging, a new method of automatic sleep staging based on a fusion algorithm, multi-scale entropy( MSE) and principal component analysis( PCA), is proposed. In this work,the data of sleep EEG monitoring and the expert staging of 8 subjects are utilized as samples. Firstly, MSE is used to extract the nonlinear dynamic features from sleep stages. Then this features are replaced by the first two principal component vectors of PCA.The purpose is reduce the data dimension redundancy, as well as retaining the vast majority of EEG non-linear features. After that the new vector are entered into the BPNN classifier to implement the MSE-PCA model of automatic sleep staging. The experimental results show that the accuracy of automatic staging can reach to 87. 9 % and kappa coefficient is 0. 77, which can improve the accuracy and stability of automatic EEG sleep staging system.
出处 《电子技术应用》 北大核心 2017年第9期22-24,29,共4页 Application of Electronic Technique
基金 国家自然科学基金资助项目(61306106)
关键词 自动睡眠分期 脑电信号(EEG) 多尺度熵(MSE) 主成分分析(PCA) 反馈神经网络(BPNN) automatic sleep staging electroencephalogram(EEG) multi-scale entropy(MSE) principal component analysis(PCA) back propagation network(BPNN)
  • 相关文献

参考文献5

二级参考文献41

  • 1倪晓宁,董藩.短期经济增长的综合影响因素研究及政策启示[J].工业技术经济,2006,25(1):71-73. 被引量:1
  • 2WOLPAW J R, BIRBAUMER N, MCFARLAND D J, et al. Brain-computer interfaces for communication and control [J]. Clinical Neurophysiology, 2002, 113(6):767-791.
  • 3WU W E I, XIAORONG G A O, HONG B O, et al.. Classifying single-trial EEG during motor imagery by iterative spario-spectral patterns learning (ISSPL)[J].IEEE Transactions on Biomedical Engineering, 2008,55 (6) : 1733-1743.
  • 4MELLINGER J, SCHALK G, BRAUN C, et al. An MEG- based brain-computer interface (BCI) [J]. Neurolmage, 2007, 36(3) :581-593.
  • 5GEORGOPOULOS A P, SCHWARTZ A B, KETTNER R E. Neuronal population coding of movement direction[J]. Science, 1986, 233(4771) :1416-1419.
  • 6BALL T, SCHULZE-BONHAGE A, AERTSEN A, et al. Differential representation of arm movement direction in relation to cortical, anatomy and function [J]. Journal of Neural Engineering, 2009,6(1) :016006, doi: 10. 1088/1741-2560/6/ 1/016006.
  • 7WALDERT S, BRSUN C, PREISSL H. Decoding performance for hand movement, EEG vs. MEG[C]. 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07,2007: 5346-5348.
  • 8WALDERT S, PREISSL H, DEMAND E, et al. Hand movement direction decoded from MEG and EEG [J]. Journal of Neuroscience,2008,28(4) :1000-1008.
  • 9BRADBERRY T J, RONG F, CONTRERAS-VIDAL J L. Decoding center-out hand velocity from MEG signals during visuomotor adaptation [J]. Neurolmage, 2009, 47(4): 1691- 1700.
  • 10MULLER K R, ANDERSON C W, BIRCHG E. Linear and nonlinear methods for brain computer interfaces [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2) :165-169.

共引文献39

同被引文献39

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部